Bulletin of the American Mathematical Society

Varieties generated by modular lattices of width four

Ralph Freese

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 78, Number 3 (1972), 447-450.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183533602

Mathematical Reviews number (MathSciNet)
MR0289376

Zentralblatt MATH identifier
0248.06007

Subjects
Primary: 06A30 08A15 06A20
Secondary: 08A30: Subalgebras, congruence relations

Citation

Freese, Ralph. Varieties generated by modular lattices of width four. Bull. Amer. Math. Soc. 78 (1972), no. 3, 447--450. https://projecteuclid.org/euclid.bams/1183533602


Export citation

References

  • 1. K. Baker, Equational axioms for classes of lattices, Bull. Amer. Math. Soc. 77 (1971), 97-102.
  • 2. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R.I., 1967. MR 37 #2638.
  • 3. R. S. Freese, Subdirectly irreducible modular lattices of width four, Notices Amer. Math. Soc. 17 (1970), 1041. Abstract #680-Al.
  • 4. R. S. Freese, Varieties generated by modular lattices of width four, Ph.D. Thesis, California Institute of Technology, 1972.
  • 5. B. Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110-121. MR 38 #5689.
  • 6. B. Jónsson, Equational classes of lattices, Math. Scand. 22 (1968), 187-196. MR 40 #66.
  • 7. R. McKenzie, Equational bases for lattice theories, Math. Scand. 27 (1970), 24-38.
  • 8. R. Wille, Primitive Länge und primitive Weite bei modularen Verbänden, Math. Z. 108 (1969), 129-136. MR 39 #2672.