Bulletin of the American Mathematical Society

Toeplitz operators in multiply connected regions

M. B. Abrahamse

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 77, Number 3 (1971), 449-454.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183532831

Mathematical Reviews number (MathSciNet)
MR0273435

Zentralblatt MATH identifier
0212.16001

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15] 46J15: Banach algebras of differentiable or analytic functions, Hp-spaces [See also 30H10, 32A35, 32A37, 32A38, 42B30]
Secondary: 30A78

Citation

Abrahamse, M. B. Toeplitz operators in multiply connected regions. Bull. Amer. Math. Soc. 77 (1971), no. 3, 449--454. https://projecteuclid.org/euclid.bams/1183532831


Export citation

References

  • 1. P. R. Ahern and D. Sarason, The Hp spaces of a class of function algebras, Acta. Math. 117 (1967), 123-163. MR 36 #689.
  • 2. L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. MR 34 #1846.
  • 3. R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Proc. Conference on Abstract Spaces and Approximation (Oberwohlfach, 1968), Internat. Schriftenreihe Numer. Math., vol. 10, Birkhâuser Verlag, Basel, 1969.
  • 4. R. G. Douglas, Toeplitz and Wiener-Hopf operators in H+C, Bull. Amer. Math. Soc. 74 (1968), 895-899. MR 37 #4648.
  • 5. R. G. Douglas, Topics in analysis, Holt, Rinehart and Winston, New York, N. Y., 1971 (to appear).
  • 6. R. G, Douglas and C. Pearcy, Spectral theory of generalized Toeplitz operators, Trans. Amer. Math. Soc. 115 (1965), 433-444. MR 33 #7849.
  • 7. R. G. Douglas and D. Sarason, Fredholm Toeplitz operators, Proc. Amer. Math. Soc. 26 (1970), 117-120.
  • 8. T. Gamelin, Uniform algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.
  • 9. M. Hasumi, Invariant subspaces for finite Riemann surfaces, Canad. J. Math. 18 (1966), 240-255. MR 32 #8200.
  • 10. G. C. Tumarkin and S. Ya. Havinson, On the existence in multiply-connected regions of single-valued analytic functions with a given modulus of boundary values, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 534-562. (Russian) MR 20 #3990.
  • 11. M. Voichick and L. Zalcman, Inner and outer functions on Riemann surfaces, Proc. Amer. Math. Soc. 16 (1965), 1200-1204. MR 32 #1359.
  • 12. H. Widom, Inversion of Toeplitz matrices. III, Notices Amer. Math. Soc. 7 (1960), 63. Abstract #564-246.
  • 13. H. Widom, Toeplitz operators on Hp, Pacific J. Math. 19 (1966), 573-582. MR 34 #1859.
  • 14. L. Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241-269.