Bulletin of the American Mathematical Society

Group duality and isomorphisms of Fourier and Fourier-Stieltjes algebras from a $W^*$-algebra point of view

Martin E. Walter

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 76, Number 6 (1970), 1321-1325.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183532415

Mathematical Reviews number (MathSciNet)
MR0284823

Zentralblatt MATH identifier
0204.14801

Subjects
Primary: 22D25: $C^*$-algebras and $W^*$-algebras in relation to group representations [See also 46Lxx] 22D35: Duality theorems
Secondary: 22D10: Unitary representations of locally compact groups 4300 43A10: Measure algebras on groups, semigroups, etc.

Citation

Walter, Martin E. Group duality and isomorphisms of Fourier and Fourier-Stieltjes algebras from a $W^*$-algebra point of view. Bull. Amer. Math. Soc. 76 (1970), no. 6, 1321--1325. https://projecteuclid.org/euclid.bams/1183532415


Export citation

References

  • 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), Cahiers Scientifiques, fasc. 25, Gauthier-Villars, Paris, 1957. MR 20 #1234.
  • 2. J. Dixmier, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
  • 3. J. Ernest, A new group algebra for locally compact groups, Amer. J. Math. 86 (1964), 467-492. MR 29 #4838.
  • 4. J. Ernest, Hopf-von Neumann algebras, Proc. Conference Functional Analysis (Irvine, Calif., 1966) Academic Press, New York, 1967, pp. 195-215. MR 36 #6956.
  • 5. P. Eymard, L'algèbra de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 37 #4208.
  • 6. R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338. MR 13, 256.
  • 7. Y. Misonou, On the direct product of W*-algebras, Tôhoku Math. J. 6 (1954), 189-204. MR 16, 1125.
  • 8. C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903.
  • 9. K. Saitô, On a duality for locally compact groups, Tôhoku Math. J. (2) 20 (1968), 355-367. MR 39 #357.
  • 10. W. F. Stinespring, Integration theorems for gages and duality for unimodular groups, Trans. Amer. Math. Soc. 90 (1959), 15-56. MR 21 #1547.
  • 11. Michio Suzuki, Structure of a group and the structure of its lattice of subgroups, Ergebnisse Math., Heft 10, Springer-Verlag, Berlin, 1956. MR 18, 715.
  • 12. M. Takesaki, A characterization of group algebras as a converse of Tannaka-Stinespring-Tatsuuma duality theorem, Amer. J. Math. 91 (1969), 529-564. MR 39 #5752.
  • 13. N. Tatsuuma, A duality theorem for locally compact groups, J. Math. Kyoto Univ. 6 (1967), 187-293. MR 36 #313.
  • 14. M. E. Walter, W*-algebras and non-abelian harmonic analysis, (to appear).
  • 15. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246.