Bulletin of the American Mathematical Society

An invariance principle for the empirical process with random sample size

M. Csörgö and S. Csörgö

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 76, Number 4 (1970), 706-710.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183532072

Mathematical Reviews number (MathSciNet)
MR0258097

Zentralblatt MATH identifier
0206.18602

Subjects
Primary: 6030 6040
Secondary: 6270 6271

Citation

Csörgö, M.; Csörgö, S. An invariance principle for the empirical process with random sample size. Bull. Amer. Math. Soc. 76 (1970), no. 4, 706--710. https://projecteuclid.org/euclid.bams/1183532072


Export citation

References

  • 1. F. J. Anscombe, Large-sample theory of sequential estimation, Proc. Cambridge Philos. Soc. 48 (1952), 600-607. MR 14, 487.
  • 2. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968. MR 38 #1718.
  • 3. L. Breiman, Probability, Addison-Wesley, Reading, Mass., 1968. MR 37 #4841.
  • 4. M. Csörgö and S. Csörgö, On weak convergence of randomly selected partial sums (to appear).
  • 5. J. Mogyoródi, Limit distributions for sequences of random variables with random indices, Trans. Fourth Prague Conf. on Information Theory, Statistical Decision Functions, Random Processes, (Prague, 1965) Academia, Prague, 1967, pp. 463-470. MR 36 #935.
  • 6. R. Pyke, The weak convergence of the empirical process with random sample size, Proc. Cambridge Philos. Soc. 64 (1968), 155-160. MR 36 #3402.
  • 7. A. Rényi, On mixing sequences of sets, Acta. Math. Acad. Sci. Hungar. 9 (1958), 215-228. MR 20 #4623.