Bulletin of the American Mathematical Society

Surfaces of vertical order 3 are tame

R. A. Jensen and L. D. Loveland

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 76, Number 1 (1970), 151-154.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183531412

Mathematical Reviews number (MathSciNet)
MR0250281

Zentralblatt MATH identifier
0194.56003

Subjects
Primary: 5705
Secondary: 5478

Citation

Jensen, R. A.; Loveland, L. D. Surfaces of vertical order 3 are tame. Bull. Amer. Math. Soc. 76 (1970), no. 1, 151--154. https://projecteuclid.org/euclid.bams/1183531412


Export citation

References

  • 1. R. H. Bing, Tame Cantor sets in E3, Pacific J. Math. 11 (1961), 435-446. MR 24 #A539.
  • 2. R. H. Bing, A surface is tame if its complement is 1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 24 #A1117.
  • 3. R. H. Bing, Improving the intersections of lines and surfaces, Michigan Math. J. 14 (1967), 155-159. MR 34 #6743.
  • 4. P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in E3, Proc. Amer. Math. Soc. 11 (1960), 832-836. MR 23 #A4133.
  • 5. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 10, 317.
  • 6. O. G. Harrold, Jr., H. C. Griffith and E. E. Posey, A characterization of tame curves in 3-space, Trans. Amer. Math. Soc. 79 (1955), 12-34. MR 19, 972.
  • 7. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc. Providence, R. I., 1949.