Bulletin of the American Mathematical Society

Relative Hauptvermutung for neighborhoods of 1-flat submanifolds with codimension two

Mitsuyoshi Kato

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 75, Number 5 (1969), 1006-1010.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183530826

Mathematical Reviews number (MathSciNet)
MR0268897

Zentralblatt MATH identifier
0199.58604

Citation

Kato, Mitsuyoshi. Relative Hauptvermutung for neighborhoods of 1-flat submanifolds with codimension two. Bull. Amer. Math. Soc. 75 (1969), no. 5, 1006--1010. https://projecteuclid.org/euclid.bams/1183530826


Export citation

References

  • 1. W. Browder, Diffeomorphisms of 1-connected manifolds, Trans, Amer. Math. Soc. 128 (1967), 155-163.
  • 2. M. Kato, A concordance classification of PL homeomorphisms of Sp X Sq, Topology (to appear).
  • 3. M. Kato, Regular neighborhoods are not topologically invariant, Bull. Amer. Math. Soc. 74 (1968), 988-991.
  • 4. M. Kato, Geometrical operations of Whitehead groups (to appear).
  • 5. R. Kirby and L. C. Siebenmann, On the triangulations of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
  • 6. R. Kirby and L. C. Siebenmann, A straightening theorem and a Hauptvermutung for pairs, Notices Amer. Math. Soc. 16 (1969), 582.
  • 7. H. Noguchi, One flat 3-manifolds in 5-space, Osaka J. Math. 1 (1964), 117-125.
  • 8. H. Noguchi, One flat submanifolds with codimension two, Illinois J. Math. 13 (1969), 220-223.
  • 9. R. K. Lashof and J. L. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-175.
  • 10. L. C. Siebenmann, On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc. 74 (1968), 738-742.
  • 11. L. C. Siebenmann and J. Sondow, Some homeomorphic sphere pairs that are combinatorially distinct, Comment. Math. Helv. 41 (1966-67), 261-272.
  • 12. J. Stallings, On infinite processes leading to differentiability in the complement of a point. Differential and combinatorial topology, Princeton Univ. Press, Princeton, N. J., 1965, pp. 245-254.
  • 13. R. Takase, Note on orientable surfaces in 4-space, Proc. Japan Acad. 39 (1963), 424.
  • 14. C. T. C. Wall, Surgery on compact manifolds, Mimeographed notes.
  • 15. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.