Bulletin of the American Mathematical Society

Minimal transformation groups with distal points

William A. Veech

Full-text: Open access

Article information

Source
Bull. Amer. Math. Soc., Volume 75, Number 3 (1969), 481-486.

Dates
First available in Project Euclid: 4 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.bams/1183530537

Mathematical Reviews number (MathSciNet)
MR0259879

Zentralblatt MATH identifier
0177.51301

Citation

Veech, William A. Minimal transformation groups with distal points. Bull. Amer. Math. Soc. 75 (1969), no. 3, 481--486. https://projecteuclid.org/euclid.bams/1183530537


Export citation

References

  • 1. J. Auslander and F. Hahn, Point-transitive flows, algebras of functions, and the Bebutov system, Fund. Math. 60 (1967), 117-137.
  • 2. R. Ellis, A semigroup associated with a transformation group, Trans. Amer. Math. Soc. 94 (1960), 272-281.
  • 3. R. Ellis, The structure of group-like extensions of minimal sets, Trans. Amer. Math. Soc., 134 (1968), 261-287.
  • 4. H. Furstenberg, The structure of distal flows, Amer. J. Math. 85 (1963), 477-515.
  • 5. S. Kakutani, "Ergodic theory of shift transformations" in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Vol. II: Contributions to probability theory, part 2, Univ. of California Press, Berkeley, Calif., 1967, pp. 405-414.
  • 6. A. Knapp, Functions behaving like almost automorphic functions, Internat. Sympos. Topological Dynamics, Benjamin, New York, pp. 299-317.
  • 7. M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math. Soc. 22 (1921), 84-100.
  • 8. W. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719-751.
  • 9. W. Veech, Point-distal flows(to appear).
  • 10. W. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2, Trans. Amer. Math. Soc. 140 (1969), 1-33.