Bulletin of the American Mathematical Society

Measure theoretic geometry and elliptic variational problems

F. J. Almgren, Jr.

Full-text: Open access

Article information

Bull. Amer. Math. Soc., Volume 75, Number 2 (1969), 285-304.

First available in Project Euclid: 4 July 2007

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Almgren, F. J. Measure theoretic geometry and elliptic variational problems. Bull. Amer. Math. Soc. 75 (1969), no. 2, 285--304. https://projecteuclid.org/euclid.bams/1183530286

Export citation


  • AL. W. K. Allard, On boundary regularity for Plateau's problem, Bull. Amer. Math. Soc. 75 (1969).
  • A1. F. J. Almgren, Jr., The homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.
  • A2. F. J. Almgren, Jr., The theory of varifolds. A variational calculus in the large for the k dimensional area integrand(multilithed notes), Princeton, 1964.
  • A3. F. J. Almgren, Jr., Plateau's Problem. An Invitation to Varifold Geometry, W. A. Benjamin, Inc., New York, 1966.
  • A4. F. J. Almgren, Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math. (2) 84 (1966), 277-292.
  • A5. F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math. (2) 87 (1968), 321-391.
  • B. J. E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. 124 (1966), 480-517.
  • D. J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), 263-321.
  • DG1. E. De Giorgi, Frontiere orientale di misura minima, Sem. Mat. Scuola Norm. Sup. Pisa, 1960/61, pp. 1-56.
  • DG2. E. De Giorgi, Una estensione del teorema di Bernstein, Ann. Scuola Norm. Sup. Pisa, (3)19 (1965), 79-85.
  • F1. H. Federer, The $(\varphi,k)$ rectifiable subsets of n space, Trans. Amer. Math. Soc. 62 (1947), 114-192.
  • F2. H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.
  • F3. H. Federer, Currents and area, Trans. Amer. Math. Soc. 98 (1961), 204-233.
  • F4. H. Federer, Some theorems on integral currents, Trans. Amer. Math. Soc. 117 (1965), 43-67.
  • F5. H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
  • FF. H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520.
  • FL1. W. H. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc. 7 (1956), 1065-1074.
  • FL2. W. H. Fleming, On the oriented Plateau Problem, Rend. Circ. Mat. Palermo (2) 11 (1962), 69-90.
  • FL3. W. H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc. 121 (1966), 160-186.
  • GM. E. Giusti and M. Miranda, Sulla regolarità dette soluzioni deboli di una classe di sistemi ellittici quasi-lineari, Arch. Rational Mech. Anal. (to appear).
  • M1. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1960.
  • M2. C. B. Morrey, Partial regularity results for non-linear elliptic systems, J. Math. Mech. 17 (1968), 649-670.
  • PS. R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-172.
  • R1. E. R. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92.
  • R2. E. R. Reifenberg, An epiperimetric inequality related to the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 1-14.
  • R3. E. R. Reifenberg, On the analyticity of minimal surfaces, Ann. of Math. (2) 80 (1964), 15-21.
  • S. J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105.
  • T. R. Thorn, Quelques propriétés globales des variétés differentiables, Comment. Math. Helv. 28 (1954), 17-86.