Bulletin of the American Mathematical Society
- Bull. Amer. Math. Soc.
- Volume 65, Number 4 (1959), 276-281.
Riemann-Roch theorems for differentiable manifolds
M. F. Atiyah and F. Hirzebruch
Full-text: Open access
Article information
Source
Bull. Amer. Math. Soc., Volume 65, Number 4 (1959), 276-281.
Dates
First available in Project Euclid: 4 July 2007
Permanent link to this document
https://projecteuclid.org/euclid.bams/1183523205
Mathematical Reviews number (MathSciNet)
MR0110106
Zentralblatt MATH identifier
0142.40901
Citation
Atiyah, M. F.; Hirzebruch, F. Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc. 65 (1959), no. 4, 276--281. https://projecteuclid.org/euclid.bams/1183523205
References
- 1. M. F. Atiyah and F. Hirzebruch, Some non-embeddability theorems for differentiable manifolds, Colloque de Topologie, Lille, 1959.
- 2. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math. vol. 80 (1958) pp. 458-538; II and III to appear.Zentralblatt MATH: 0097.36401
Mathematical Reviews (MathSciNet): MR102800
Digital Object Identifier: doi:10.2307/2372795 - 3. A. Borel and J-P. Serre, Le théorème de Riemann-Roch (d'après Grothendieck). Bull. Soc. Math. France vol. 86 (1958), pp. 97-136.
- 4. R. Bott, The stable homotopy of the classical groups, Proc. Nat. Acad. Sci. U.S.A. vol. 43 (1957) pp. 933-935.Zentralblatt MATH: 0093.03401
Mathematical Reviews (MathSciNet): MR102802
Digital Object Identifier: doi:10.1073/pnas.43.10.933 - 5. R. Bott, The space of loops on a Lie group, Mich. Math. J. vol. 5 (1958) pp. 35-61.Zentralblatt MATH: 0096.17701
Mathematical Reviews (MathSciNet): MR102803
Digital Object Identifier: doi:10.1307/mmj/1028998010
Project Euclid: euclid.mmj/1028998010 - 6. R. Bott, Some remarks on the periodicity theorems, Colloque de Topologie, Lille, 1959.
- 7. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Springer, 1956.
- 8. F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math. vol. 60 (1954) pp. 213-236.Zentralblatt MATH: 0056.16803
Mathematical Reviews (MathSciNet): MR66013
Digital Object Identifier: doi:10.2307/1969629 - 9. I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres, Proc. London Math. Soc. vol. 4 (1954) pp. 196-218.Zentralblatt MATH: 0056.16703
Mathematical Reviews (MathSciNet): MR61838
Digital Object Identifier: doi:10.1112/plms/s3-4.1.196 - 10. M. A. Kervaire and J. Milnor, Bernoulli numbers, homotopy groups and a theorem of Rohlin. Proceedings of the International Congress of Mathematicians, 1958.Zentralblatt MATH: 0119.38503
- 11. J. Milnor, On the cobordisme ring Ω*, and a complex analogue, (in preparation).Zentralblatt MATH: 0095.16702
- 12. V. A. Rohlin, New results in the theory of 4-dimensional manifolds, Dokl. Acad. Nauk. S.S.S.R. vol. 84 (1952) pp. 221-224 (in Russian).Mathematical Reviews (MathSciNet): MR52101
- 13. R. Thom, Espacés fibrès en sphères et carrés de Steenrod, Ann. Sci. École Norm. Sup. vol. 69 (1952) pp. 109-182.
- 14. W. T. Wu, On the Pontrjagin classes III, Acta Math. Sinica vol. 4 (1954) (in Chinese).
American Mathematical Society

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Grothendieck-Riemann-Roch for complex manifolds
O'Brian, Nigel R., Toledo, Domingo, and Tong, Yue Lin L., Bulletin (New Series) of the American Mathematical Society, 1981 - The Riemann-Roch theorem for complex $V$-manifolds
Kawasaki, Tetsuro, Osaka Journal of Mathematics, 1979 - The Riemann-Roch theorem for manifolds with conical singularities
Schulze, Bert-Wolfgang and Tarkhanov, Nikolai, Osaka Journal of Mathematics, 1999
- Grothendieck-Riemann-Roch for complex manifolds
O'Brian, Nigel R., Toledo, Domingo, and Tong, Yue Lin L., Bulletin (New Series) of the American Mathematical Society, 1981 - The Riemann-Roch theorem for complex $V$-manifolds
Kawasaki, Tetsuro, Osaka Journal of Mathematics, 1979 - The Riemann-Roch theorem for manifolds with conical singularities
Schulze, Bert-Wolfgang and Tarkhanov, Nikolai, Osaka Journal of Mathematics, 1999 - Orbifold quantum Riemann–Roch, Lefschetz and Serre
Tseng, Hsian-Hua, Geometry & Topology, 2010 - An analytic proof of Riemann-Roch-Hirzebruch theorem for Kaehler manifolds
Patodi, V. K., Journal of Differential Geometry, 1971 - A formulation of the Riemann-Roch theorem in terms of differentials with singularities at the ideal boundary
Shiba, Masakazu, Journal of Mathematics of Kyoto University, 1975 - A generalization of the Riemann-Roch theorem
Mattson, H. F., Illinois Journal of Mathematics, 1961 - Contributions to Riemann-Roch’s theorem
Kusunoki, Yukio, Memoirs of the College of Science, University of Kyoto. Series A: Mathematics, 1958 - Riemann-Roch for toric orbifolds
Guillemin, Victor, Journal of Differential Geometry, 1997 - The Hirzebruch-Riemann-Roch theorem.
Nori, Madhav V., The Michigan Mathematical Journal, 2000