Bayesian Analysis

Pre-surgical fMRI Data Analysis Using a Spatially Adaptive Conditionally Autoregressive Model

Zhuqing Liu, Veronica J. Berrocal, Andreas J. Bartsch, and Timothy D. Johnson

Full-text: Open access

Abstract

Spatial smoothing is an essential step in the analysis of functional magnetic resonance imaging (fMRI) data. One standard smoothing method is to convolve the image data with a three-dimensional Gaussian kernel that applies a fixed amount of smoothing to the entire image. In pre-surgical brain image analysis where spatial accuracy is paramount, this method, however, is not reasonable as it can blur the boundaries between activated and deactivated regions of the brain. Moreover, while in a standard fMRI analysis strict false positive control is desired, for pre-surgical planning false negatives are of greater concern. To this end, we propose a novel spatially adaptive conditionally autoregressive model with variances in the full conditional of the means that are proportional to error variances, allowing the degree of smoothing to vary across the brain. Additionally, we present a new loss function that allows for the asymmetric treatment of false positives and false negatives. We compare our proposed model with two existing spatially adaptive conditionally autoregressive models. Simulation studies show that our model outperforms these other models; as a real model application, we apply the proposed model to the pre-surgical fMRI data of two patients to assess peri- and intra-tumoral brain activity.

Article information

Source
Bayesian Anal., Volume 11, Number 2 (2016), 599-625.

Dates
First available in Project Euclid: 26 August 2015

Permanent link to this document
https://projecteuclid.org/euclid.ba/1440594946

Digital Object Identifier
doi:10.1214/15-BA972

Mathematical Reviews number (MathSciNet)
MR3472004

Zentralblatt MATH identifier
1359.62407

Keywords
fMRI analysis spatially adaptive CAR models loss function pre-surgical mapping

Citation

Liu, Zhuqing; Berrocal, Veronica J.; Bartsch, Andreas J.; Johnson, Timothy D. Pre-surgical fMRI Data Analysis Using a Spatially Adaptive Conditionally Autoregressive Model. Bayesian Anal. 11 (2016), no. 2, 599--625. doi:10.1214/15-BA972. https://projecteuclid.org/euclid.ba/1440594946


Export citation

References

  • Bartsch, A. J., Biller, A., and Homola, G. (2014). “Presurgical tractography applications.” In: Johansen-Berg, H. and Behrens, T. E. (eds.), Diffusion MRI: from Quantitative Measurement to in-vivo Neuroanatomy, 531–568. Elsevier Academic Press, Second edition.
  • Bartsch, A. J., Homola, G., Biller, A., Solymosi, L., and Bendszus, M. (2006). “Diagnostic functional MRI: Illustrated clinical applications and decision-making.” Journal of Magnetic Resonance Imaging, 23(6): 921–932.
  • Beckmann, C. F. and Smith, S. M. (2004). “Probabilistic independent component analysis for functional magnetic resonance imaging.” IEEE Transactions on Medical Imaging, 23(2): 137–152.
  • Besag, J. (1974). “Spatial interaction and the statistical analysis of lattice systems.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 36(2): 192–236.
  • — (1975). “Statistical analysis of non-lattice data.” The Statistician, 24(3): 179–195.
  • — (1977). “Efficiency of pseudo-likelihood estimation for simple Gaussian fields.” Biometrika, 64(3): 616–618.
  • — (1993). “Towards Bayesian image analysis.” Journal of Applied Statistics, 20(5–6): 107–119.
  • Besag, J., York, J., and Mollié, A. (1991). “Bayesian image restoration, with two applications in spatial statistics.” Annals of the Institute of Statistical Mathematics, 43(1): 1–20.
  • Bookheimer, S. (2007). “Pre-surgical language mapping with functional magnetic resonance imaging.” Neuropsychology Review, 17(2): 145–155.
  • Brewer, M. J. and Nolan, A. J. (2007). “Variable smoothing in Bayesian intrinsic autoregressions.” Environmetrics, 18(8): 841–857.
  • Brook, D. (1964). “On the distinction between the conditional probability and the joint probability approaches in the specification of nearest-neighbour systems.” Biometrika, 51(3/4): 481–483.
  • Brooks, S. P. and Gelman, A. (1998). “General methods for monitoring convergence of iterative simulations.” Journal of Computational and Graphical Statistics, 7(4): 434–455.
  • Durnez, J., Moerkerke, B., Bartsch, A., and Nichols, T. E. (2013). “Alternative-based thresholding with application to presurgical fMRI.” Cognitive, Affective, & Behavioral Neuroscience, 13(4): 703–713.
  • Fischl, B. (2012). “FreeSurfer.” Neuroimage, 62(2): 774–781.
  • Flegal, J. M., Haran, M., and Jones, G. L. (2008). “Markov chain Monte Carlo: Can we trust the third significant figure?” Statistical Science, 250–260.
  • Flegal, J. M. and Hughes, J. (2012). MCMCSE: Monte Carlo Standard Errors for MCMC. Riverside, CA and Minneapolis, MN. R package version 1.0-1.
  • Friston, K., Jezzard, P., and Turner, R. (1994). “Analysis of functional MRI time-series.” Human Brain Mapping, 1(2): 153–171.
  • Friston, K. J., Holmes, A. P., Poline, J., Grasby, P., Williams, S., Frackowiak, R. S., and Turner, R. (1995). “Analysis of fMRI time-series revisited.” Neuroimage, 2(1): 45–53.
  • Fujiwara, N., Sakatani, K., Katayama, Y., Murata, Y., Hoshino, T., Fukaya, C., and Yamamoto, T. (2004). “Evoked-cerebral blood oxygenation changes in false-negative activations in BOLD contrast functional MRI of patients with brain tumors.” Neuroimage, 21(4): 1464–1471.
  • Gelman, A. and Meng, X. L. (1998). “Simulating normalizing constants: From importance sampling to bridge sampling to path sampling.” Statistical Science, 13(2): 163–185.
  • Gelman, A. and Rubin, D. B. (1992). “Inference from iterative simulation using multiple sequences.” Statistical Science, 457–472.
  • Gross, W. L. and Binder, J. R. (2014). “Alternative thresholding methods for fMRI data optimized for surgical planning.” Neuroimage, 84: 554–561.
  • Haller, S. and Bartsch, A. J. (2009). “Pitfalls in fMRI.” Eur Radiology, 19: 2689–2706.
  • Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika, 57(1): 97–109.
  • Hickok, G. and Poeppel, D. (2007). “The cortical organization of speech processing.” Nature Reviews Neuroscience, 8: 393–402.
  • Holmes, A. P., Blair, R., Watson, G., and Ford, I. (1996). “Nonparametric analysis of statistic images from functional mapping experiments.” Journal of Cerebral Blood Flow & Metabolism, 16(1): 7–22.
  • Hsu, Y. Y., Chang, C. N., Jung, S. M., Lim, K. E., Huang, J. C., Fang, S. Y., and Liu, H. L. (2004). “Blood oxygenation level-dependent MRI of cerebral gliomas during breath holding.” Journal of Magnetic Resonance Imaging, 19: 160–167.
  • Johnson, T. D., Liu, Z., Bartsch, A. J., and Nichols, T. E. (2013). “A Bayesian non-parametric Potts model with application to pre-surgical FMRI data.” Statistical Methods in Medical Research, 22(4): 364–381.
  • Krüger, G. and Glover, G. H. (2001). “Physiological noise in oxygenation-sensitive magnetic resonance imaging.” Magnetic Resonance in Medicine, 46(4): 631–637.
  • Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S., and Turner, R. (1992). “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.” Proceedings of the National Academy of Sciences, 89(12): 5675–5679.
  • Lindquist, M. A. (2008). “The statistical analysis of fMRI data.” Statistical Science, 23(4): 439–464.
  • Müller, P., Parmigiani, G., and Rice, K. (2007). “FDR and Bayesian multiple comparisons rules.” In: Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M. (eds.), Bayesian Statistics 8, 349–370. Oxford Sci. Publ., Oxford Univ. Press, Oxford.
  • Murray, I., Ghahramani, Z., and MacKay, D. (2006). “MCMC for doubly-intractable distributions.” In: Dechter, R. and Richardson, T. S. (eds.), Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI), 359–366. Association for Uncertainty in Artificial Intelligence Press.
  • Nossek, E., Matot, I., Shahar, T., Barzilai, O., Rapoport, Y., Gonen, T., Sela, G., Grossman, R., Korn, A., Hayat, D., and Ram, Z. (2013). “Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients.” Neurosurgery, 73(1): 135–140.
  • Ogawa, S., Lee, T., Kay, A., and Tank, D. (1990). “Brain magnetic resonance imaging with contrast dependent on blood oxygenation.” Proceedings of the National Academy of Sciences, 87(24): 9868–9872.
  • Ogawa, S., Tank, D., Menon, R., Ellermann, J., Kim, S., Merkle, H., and Ugurbil, K. (1992). “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging.” Proceedings of the National Academy of Sciences, 89(13): 5951–5955.
  • Ojemann, J. G., Miller, J. W., and Silbergeld, D. L. (1996). “Preserved function in brain invaded by tumor.” Neurosurgery, 39(2): 253–88.
  • Potts, R. B. (1952). “Some generalized order-disorder transformations.” Mathematical Proceedings of the Cambridge Philosophical Society, 48: 106–109.
  • Reich, B. J. and Hodges, J. S. (2008). “Modeling longitudinal spatial periodontal data: A spatially adaptive model with tools for specifying priors and checking fit.” Biometrics, 64(3): 790–799.
  • Shaby, B. A. (2014). “The open-faced sandwich adjustment for MCMC using estimating functions.” Journal of Computational and Graphical Statistics, 23(3): 853–876.
  • Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., and Matthews, P. M. (2004). “Advances in functional and structural MR image analysis and implementation as FSL.” Neuroimage, 23: S208–S219.
  • Sunaert, S. (2006). “Presurgical planning for tumor resectioning.” Journal of Magnetic Resonance Imaging, 23(6): 887–905.
  • Ulmer, J. L., Hacein-Bey, L., Mathews, V. P., Mueller, W. M., DeYoe, E. A., Prost, R. W., Meyer, G. A., Krouwer, H. G., and Schmainda, K. M. (2004). “Lesion-induced pseudo-dominance at functional magnetic resonance imaging: implications for preoperative assessments, with discussion.” Neurosurgery, 55: 569–591.
  • Welvaert, M., Durnez, J., Moerkerke, B., Verdoolaege, G., and Rosseel, Y. (2011). “neuRosim: an R package for generating fMRI data.” Journal of Statistical Software, 44(10): 1–18.
  • Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., and Smith, S. M. (2005). “Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data.” IEEE Transactions on Medical Imaging, 24(1): 1–11.
  • Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., and Smith, S. M. (2009). “Bayesian analysis of neuroimaging data in FSL.” Neuroimage, 45(1): S173–S186.
  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., and Evans, A. C. (1996). “A unified statistical approach for determining significant signals in images of cerebral activation.” Human Brain Mapping, 4(1): 58–73.
  • Yoo, S. S., Talos, I. F., Golby, A. J., Black, P. M., and Panych, L. P. (2004). “Evaluating requirements for spatial resolution of fMRI for neurosurgical planning.” Human Brain Mapping, 21(1): 34–43.
  • Yue, Y., Loh, J. M., and Lindquist, M. A. (2010). “Adaptive spatial smoothing of fMRI images.” Statistics and Its Interface, 3: 3–13.