Bayesian Analysis

Comment on Article by Rubio and Steel

Robert E. Weiss and Marc A. Suchard

Full-text: Open access

Abstract

We discuss Rubio and Steel (2014). We discuss whether Jeffreys priors are worth the attention given to them, then move on to discuss the concepts of valid Bayesian inference and benchmark Bayesian inference. We briefly investigate the skew-normal and skew-t(4) models for variables in the Australian Institute of Sport (AIS) data to investigate the range of estimates that occur for the skewness parameter. The discussion closes by wondering whether we shouldn’t just use a Dirichlet Process Mixture instead of a skew-normal or skew-t.

Article information

Source
Bayesian Anal., Volume 9, Number 1 (2014), 29-38.

Dates
First available in Project Euclid: 24 February 2014

Permanent link to this document
https://projecteuclid.org/euclid.ba/1393251767

Digital Object Identifier
doi:10.1214/13-BA870

Mathematical Reviews number (MathSciNet)
MR3188296

Zentralblatt MATH identifier
1327.62169

Keywords
Jeffreys prior Valid Bayesian inference Benchmark Bayesian inference Skew normal Split normal

Citation

Weiss, Robert E.; Suchard, Marc A. Comment on Article by Rubio and Steel. Bayesian Anal. 9 (2014), no. 1, 29--38. doi:10.1214/13-BA870. https://projecteuclid.org/euclid.ba/1393251767


Export citation

References

  • Cook, R. D. and Weisberg, S. (2009). Applied Regression Including Computing and Graphics. Wiley.
  • Drummond, A. J., Suchard, M. A., Xie, D., and Rambaut, A. (2012). “Bayesian phylogenetics with BEAUti and the BEAST 1.7.” Molecular Biology and Evolution, 29(8): 1969–1973.
  • Eaton, M. L. and Sudderth, W. D. (1998). “A new predictive distribution for normal multivariate linear models.” Sankhyā: The Indian Journal of Statistics, Series A, 60: 363–382.
  • Edwards, W., Lindman, H., and Savage, L. J. (1963). “Bayesian statistical inference for psychological research.” Psychological Review, 70(3): 193–242.
  • Fernández, C. and Steel, M. F. (1998). “On Bayesian modeling of fat tails and skewness.” Journal of the American Statistical Association, 93(441): 359–371.
  • Geisser, S. (1965). “Bayesian estimation in multivariate analysis.” The Annals of Mathematical Statistics, 36(1): 150–159.
  • Geyer, C. J. (1992). “Practical Markov chain Monte Carlo.” Statistical Science, 7(4): 473–483.
  • Hobert, J. P. and Casella, G. (1996). “The effect of improper priors on Gibbs sampling in hierarchical linear mixed models.” Journal of the American Statistical Association, 91(436): 1461–1473.
  • Ibrahim, J. G. and Laud, P. W. (1991). “On Bayesian analysis of generalized linear models using Jeffreys’s prior.” Journal of the American Statistical Association, 86(416): 981–986.
  • Ioannidis, J. P. (2005). “Why most published research findings are false.” PLoS Medicine, 2(8): e124.
  • Jeffreys, H. (1998). The Theory of Probability, third edition. Oxford University Press.
  • Johnson, V. E. (2013). “Revised standards for statistical evidence.” Proceedings of the National Academy of Sciences, 110(48): 19313–19317.
  • Keyes, T. K. and Levy, M. S. (1996). “Goodness of prediction fit for multivariate linear models.” Journal of the American Statistical Association, 91(433): 191–197.
  • Liang, L.-J. and Weiss, R. E. (2007). “A Hierarchical Semiparametric Regression Model for Combining HIV-1 Phylogenetic Analyses Using Iterative Reweighting Algorithms.” Biometrics, 63(3): 733–741.
  • Liang, L.-J., Weiss, R. E., Redelings, B., and Suchard, M. A. (2009). “Improving phylogenetic analyses by incorporating additional information from genetic sequence databases.” Bioinformatics, 25(19): 2530–2536.
  • Rubio, F. J. and Steel, M. F. J. (2014). “Inference in Two-Piece Location-Scale Models with Jeffreys Priors.” Bayesian Analysis, 9: 1–22.
  • Stein, C. (1956). “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution.” In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, volume 1, 197–206.
  • Tiao, G. C. and Tan, W. (1965). “Bayesian analysis of random-effect models in the analysis of variance. I. Posterior distribution of variance-components.” Biometrika, 52: 37–53.

See also

  • Related item: Francisco J. Rubio, Mark F. J. Steel. Inference in Two-Piece Location-Scale Models with Jeffreys Priors. Bayesian Anal., Vol. 9, Iss. 1 (2014) 1–22.