Bayesian Analysis

Comment on Article by Müller and Mitra

Bradley P. Carlin and Thomas A. Murray

Full-text: Open access

Article information

Source
Bayesian Anal., Volume 8, Number 2 (2013), 303-310.

Dates
First available in Project Euclid: 24 May 2013

Permanent link to this document
https://projecteuclid.org/euclid.ba/1369407551

Digital Object Identifier
doi:10.1214/13-BA811A

Mathematical Reviews number (MathSciNet)
MR3066940

Zentralblatt MATH identifier
1329.62160

Citation

Carlin, Bradley P.; Murray, Thomas A. Comment on Article by Müller and Mitra. Bayesian Anal. 8 (2013), no. 2, 303--310. doi:10.1214/13-BA811A. https://projecteuclid.org/euclid.ba/1369407551


Export citation

References

  • Escobar, M.D. and West, M. (1998). Computing Bayesian nonparametric hierarchical models. In Practical Nonparametric and Semiparametric Bayesian Statistics, Lecture Notes in Statistics, 133, 1–22.
  • Hobbs, B.P., Carlin, B.P., Mandrekar, S., and Sargent, D.J. (2011). Hierarchical commensurate and power prior models for adaptive incorporation of historical information in clinical trials. Biometrics, 67, 1047–1056.
  • Hobbs, B.P., Carlin, B.P., and Sargent, D.J. (2013). Adaptive adjustment of the randomization ratio using historical control data. To appear Clinical Trials.
  • Hobbs, B.P., Sargent, D.J., and Carlin, B.P. (2012). Commensurate priors for incorporating historical information in clinical trials using general and generalized linear models. Bayesian Analysis, 7, 639–674.
  • Kruschke, J. (2011). Doing Bayesian Data Analysis. New York: Academic Press, 2011.
  • Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1–14.
  • Lunn, D., Jackson, C., Best, N., Thomas, A., and Spiegelhalter, D.J. (2012). The BUGS Book: A Practical Introduction to Bayesian Analysis. Boca Raton, FL: Chapman and Hall/CRC Press.
  • Murray, T.A., Hobbs, B.P., Lystig, T.C., and Carlin, B.P. (2013). Composite Kaplan-Meier and semiparametric commensurate Bayesian models for post-market medical device surveillance with historical survival information. Research Report 2013–004, Division of Biostatistics, University of Minnesota.
  • Neelon, B.H., O’Malley, A.J., and Normand, S.-L.T. (2010). A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use. Statistical Modelling, 10, 421–439.
  • Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 71, 319–392.

See also

  • Related item: Peter Müller, Riten Mitra. Bayesian Nonparametric Inference – Why and How. Bayesian Anal., Vol. 8, Iss. 2 (2013) 269–302.