Bayesian Analysis

A Bayesian Method for Estimating Evolutionary History

Joungyoun Kim, Nicola M. Anthony, and Bret R. Larget

Full-text: Open access


Phylogeography is the study of evolutionary history among populations in a species associated with geographic genetic variation. This paper examines the phylogeography of three African gorilla subspecies based on two types of DNA sequence data. One type is HV1, the first hyper-variable region in the control region of the mitochondrial genome. The other type is nuclear mitochondrial DNA (Numt DNA), which results from the introgression of a copy of HV1 from the mitochondrial genome into the nuclear genome. Numt and HV1 sequences evolve independently when in different organelles, but they share a common evolutionary history at the same locus in the mitochondrial genome prior to introgression. This study estimates the evolutionary history of gorilla populations in terms of population divergence times and effective population sizes. Also, this study estimates the number of introgression events. The estimates are obtained in a Bayesian framework using novel Markov chain Monte Carlo methods. The method is based on a hybrid coalescent process that combines separate coalescent processes for HV1 and Numt sequences along with a transfer model for introgression events within a single population tree. This Bayesian method for the analysis of Numt and HV1 sequences is the first approach specifically designed to model the evolutionary history of homologous multi-locus sequences within a population tree framework. The data analysis reveals highly discordant estimates of the divergence time between eastern and western gorilla populations for HV1 and Numt sequences. The discordant east-west split times are evidence of male-mediated gene flow between east and west long after female gorillas stopped this migration. In addition, the analysis estimates multiple independent introgression events.

Article information

Bayesian Anal., Volume 7, Number 4 (2012), 917-974.

First available in Project Euclid: 27 November 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

divergence time Mitochondrial sequence HV1 Numt Introgression Homologous sequences Coalescence Phylogeography Population genetics Phylogeny


Kim, Joungyoun; Anthony, Nicola M.; Larget, Bret R. A Bayesian Method for Estimating Evolutionary History. Bayesian Anal. 7 (2012), no. 4, 917--974. doi:10.1214/12-BA732.

Export citation


  • Altheide, T. (2002). “Comparative population genetics of the Hominoidea: an investigation of locus-specific and genome wide influence.” Ph.D. thesis, Department of Ecology and Evolutionary Biology, University of Arizona.
  • Anthony, N. M., Clifford, S. L., Bawe-Johnson, M., Abernethy, K. A., Bruford, M. W., and Wickings, E. J. (2006). “Distinguishing gorilla mitochondrial sequences from nuclear integrations and PCR recombinants: Guidelines for their diagnosis in complex sequence databases.” Molecular Phylogenetics and Evolution, 43: 553–566.
  • Anthony, N. M., Johnson-Bawe, M., Jeffery, K., Clifford, S. L., Abernethy, K. A., Tutin, C. E., Lahm, S. A., White, L. J. T., Utley, J. F., Wickings, E. J., and Bruford, M. W. (2007). “The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa.” Proceedings of the National Academy of Sciences, 104: 20432–20436.
  • Bensasson, D., Zhang, D., Hartl, D., and Hewitt, G. (2001). “Mitochondrial pseudogenes: evolution’s misplaced witnesses.” Trends in Ecology and Evolution, 16(6): 314–321.
  • Benson, D., Karsch-Mizrachi, I., Lipman, D., Ostell, J., and Sayers, E. (2011). “GenBank.” Nucleic Acids Research, 39(Database issue): D32–37.
  • Brown, W., Prager, E., Wang, A., and Wilson, A. (1982). “Mitochondrial DNA sequences of primates: tempo and mode of evolution.” Journal of Molecular Evolution, 18(4): 225–39.
  • Burrows, W. and Ryder, O. A. (1997). “Y-chromosome variation in great apes.” Nature, 385: 125–126.
  • Chen, F.-C. and Li, W.-H. (2001). “Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees.” American Journal of Human Genetics, 68(2): 444–456.
  • Clifford, S., Abernethy, K., White, L., Tutin, C., and Bruford, M. (2003). “Genetic studies of western gorillas.” In Taylor, A. and Goldsmiths, M. (eds.), Gorilla biology: a multidisciplinary perspective, 269–292. Cambridge University Press.
  • Clifford, S. L., Anthony, N. M., Bawe-Johnson, M., Abernethy, K. A., Tutin, C. E. G., White, L. J. T., Bermejo, M., Goldsmith, M. L., Mcfarland, K., Jeffery, K. J., Bruford, M. W., and Wickings, E. J. (2004). “Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla).” Molecular Ecology, 13: 1551–1565.
  • Drummond, A. J., Nicholls, G. K., Rodrigo, A. G., and Solomon, W. (2002). “Estimating Mutation Parameters, Population History and Genealogy Simultaneously From Temporally Spaced Sequence Data.” Genetics, 161: 1307–1320.
  • Drummond, A. J. and Rambaut, A. (2007). “BEAST: Baysian evolutionary analysis by sampling trees.” BMC Evolutionary Biology, 7: 214.
  • Felsenstein, J. (1973). “Maximum likelihood estimation of evolutionary trees from continuous characters.” American Journal of Human Genetics, 25: 471–492.
  • — (1981). “Evolutionary trees from DNA sequences: A maximum likelihood approach.” Biological Journal of the Linnean Society, 17: 368–376.
  • Gelman, A. and Rubin, D. (1992). “Inference from iterative simulation using multiple sequences.” Statistical Science, 7: 457–511.
  • Goldberg, T. L. and Ruvolo, M. (1997). “The geographic apportionment of mitochondrial genetic diversity in East African chimpanzees, Pan troglodytes schweinfurthii.” Molecular Biology, 14: 976–984.
  • Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computational and Bayesian model determination.” Biometrika, 82(4): 711–732.
  • Groves, C. P. (1967). “Ecology and taxonomy of the gorilla.” Nature, 213: 890–893.
  • — (1970). “Population systematics of the gorilla.” Journal of Zoology, 161: 287–300.
  • Haffer, J. (1969). “Speciation in Amazonian forest birds.” Science, 165: 131–137.
  • Harpending, H. C., Dagger, M. A., Gurven, M., Jorde, L. B., Rogers, A. R., and Sherry, S. T. (1998). “Genetic traces of ancient demography.” Proceedings of the National Academy of Sciences, 95: 1961–1967.
  • Hartl, D. L. (2000). A Primer of Population Genetics. Sinauer, 3 edition.
  • Hasegawa, M., Kishino, H., and Yano, T. (1985). “Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.” Journal of Molecular Evolution, 22: 160–174.
  • Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their applications.” Biometrika, 57(1): 97–109.
  • Hey, J. and Nielsen, R. (2007). “Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics.” Proceedings of the National Academy of Sciences, 104: 2785–2790.
  • Hu, X., Javadian, A., Gagneux, P., and Robertson, B. H. (2001). “Paired chimpanzee hepatitis B virus (ChHBV) and mtDNA sequences suggest different ChHBV genetic variants are found in geographically distinct chimpanzee subspecies.” Virus Research, 79: 103–108.
  • Ingman, M., Kaessmann, H., Pääbo, S., and Gyllensten, U. (2000). “Mitochondrial genome variation and the origin of modern humans.” Nature, 408: 708–713.
  • Jensen-Seaman, M., Deinard, A., and Kidd, K. (2003). “Mitochondrial and nuclear DNA estimates of divergence between and western gorillas.” In Taylor, A. and Goldsmiths, M. (eds.), Gorilla biology: a multidisciplinary perspective, 247–268. Cambirdge University Press.
  • Jensen-Seaman, M. and Kidd, K. (2001). “Mitochondrial DNA variation and biogeography of eastern gorillas.” Molecular Ecology, 10: 2241–2247.
  • Jensen-Seaman, M. I., Deinard, A. S., and Kidd, K. K. (2001). “Modern African Ape Populations as Genetic and Demographic Models of the Last Common Ancestor of Humans, Chimpanzees, and Gorillas.” Journal of Heredity, 92: 475–480.
  • Kortland, A. (1983). “Marginal habitats in chimpanzees.” Journal of Human Evolution, 12: 231–278.
  • Larget, B. and Simon, D. L. (1999). “Faster Likelihood calculations on trees.” Technical report, Duquesne University.
  • Lopez, J., Yuhki, N., Masuda, R., Modi, W., and O’Brien, S. (1994). “Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat.” Journal of Molecular Evolution, 39(5): 174–190.
  • Morin, P., Moore, J., and Chakraborty, R. (1994). “Kin selection, social structure, gene flow, and the evolution of chimpanzees.” Science, 265: 1193–1201.
  • Nei, M. and Li, W.-H. (1979). “Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases.” Proceedings of the National Academy of Sciences, 76: 5269–5273.
  • Nielsen, R. and Wakeley, J. (2001). “Distinguishing Migration From Isolation: A Markov Chain Monte Carlo Approach.” Genetics, 158: 885–896.
  • Pidanciera, N., Jordana, S., Luikarta, G., and Taberleta, P. (2006). “Evolutionary history of the genus Capra (Mammalia, Artiodactyla): Discordance between mitochondrial DNA and Y-chromosome phylogenies.” Molecular Phylogenetics and Evolution, 40: 739–749.
  • Rannala, B. and Yang, Z. (2003). “Bayes Estimation of Species Divergence Times and Ancestral Population Sizes Using DNA Sequences From Multiple Loci.” Genetics Society of America, 164: 1645–1656.
  • — (2007). “Inferring Speciation Times under an Episodic Molecular Clock.” Systematic Biology, 56: 453–466.
  • Ricchetti, M., Tekaia, F., and Dujon, B. (2004). “Continued colonization of the human genome by mitochondrial DNA.” PLoS Biol, 2(9): E273.
  • Richly, E. and Leister, D. (2004). “NUMTs in sequenced eukaryotic genomes.” Molecular Biology and Evolution, 21(6): 1081–4.
  • Simon, D. L. and Larget, B. (2004). “Bayesian Analysis to Describe Genomic Evolution by Rearrangement (BADGER).” Technical report, Department of Mathematics and Computer Science, Duquesne University.
  • Tajima, F. (1983). “Evolutionary relationship of DNA sequences in finite populations.” Genetics, 105: 437–460.
  • Takahata, N., Satta, Y., and Klein, J. (1995). “Divergence Time and Population Size in the Lineage Leading to Modern Humans.” Theoretical Population Biology, 48(2): 198–221.
  • Tamura, K. and Nei, M. (1993). “Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.” Molecular Biology and Evolution, 10: 512–526.
  • Thalmann, O., Fischer, F., Lankester, F., Pääbo, S., and Vigilant, L. (2007). “The Complex Evolutionary History of Gorillas: Insights from Genomic Data.” Molceular Biology and Evolution, 24: 146–158.
  • Thalmann, O., Hebler, J., Poinar, H., Pääbo, S., and Vigilant, L. (2004). “Unreliable mtDNA data due to nuclear insertions: a cautionary tale from analysis of humans and other great apes.” Molecular Ecology, 13: 321–335.
  • Thalmann, O., Serre, D., Hofreiter, M., Lukas, D., and Eriksson, J. (2005). “Nuclear insertions help and hinder inference of the evolutionary history of gorilla mtDNA.” Molecular Ecology, 15: 179–188.
  • Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.” Nucleic Acids Research, 22: 4673–4680.
  • Tosi, A. J., Morales, J. C., and Melnick, D. J. (2000). “Comparison of Y Chromosome and mtDAN Phylogenies Leads to Unique Inferences of Macaque Evolutionary History.” Molecular Phylogenetics and Evolution, 17: 133–144.
  • Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K., and Wilson, A. C. (1991). “African populations and the evolution of human mitochondrial DNA.” Science, 253: 1503–1507.
  • World Wildlife Foundation (2008). URL
  • Wright, S. (1931). “Evolution in Mendelian populations.” Genetics, 16: 97–159.
  • — (1938). “Size of population and breeding structure in relation to evolution.” Science, 87: 430–431.
  • Yamagiwa, J. (1986). “Activity rhythm and the ranging of a solitary male mountain gorilla (Gorilla gorilla beringei).” Primates, 27: 273–282.
  • Yamagiwa, J. and Mwanza, N. (1994). “Day-Journey Length and Daily Diet of Solitary Male Gorillas in Lowland and Highland Habitats.” International Journal of Primatology, 15: 207–224.
  • Yang, Z. (1994). “Maximum Likelihood Phylogenetic Estimation from DNA sequences with Variable Rates over Sites: Approximate Methods.” Journal of Molecular Evolution, 39: 306–314.
  • Yang, Z. and Rannala, B. (2006). “Bayesian Estimation of Species Divergence Times Under a Molecular Clock Using Multiple Fossil Calibrations with Soft Bounds.” Molecular Biology and Evolution, 23: 212–226.
  • Yu, N., M. I. Jensen-Seaman, L. C., Ryder, O., and Lia, W.-H. (2004). “Nucleotide Diversity in Gorillas.” Genetics, 166: 375–1383.
  • Zischler, H., H, H. G., von Haeseler, A., and Pääbo, S. (1995). “A nuclear ‘fossil’ of the mitochondrial D-loop and the origin of modern humans.” Nature, 378(6556): 489–492.