Bayesian Analysis

The search for certainty: a critical assessment

Christian P. Robert

Full-text: Open access


The Search for Certainty was published in (Burzdy, 2009) by Krzysztof Burdzy. It examines the "philosophical duopoly" of von Mises and de Finetti at the foundation of probability and statistics and find this duopoly missing. This review exposes the weakness of the arguments presented in the book, it questions the relevance of introducing a new set of probability axioms from a methodological perspective, and it concludes with the lack of impact of this book on statistical foundations and practice.

Article information

Bayesian Anal., Volume 5, Number 2 (2010), 213-222.

First available in Project Euclid: 20 June 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Foundations frequentist statistics Bayesian statistics von Mises de Finetti probability theory


Robert, Christian P. The search for certainty : a critical assessment. Bayesian Anal. 5 (2010), no. 2, 213--222. doi:10.1214/10-BA601.

Export citation


  • Allais, M. 1953. Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'école américaine. Econometrica 21: 503–546.
  • Beaumont, M., R. Nielsen, C. Robert, J. Hey, O. Gaggiotti, L. Knowles, A. Estoup, P. Mahesh, J. Coranders, M. Hickerson, S. Sisson, N. Fagundes, L. Chikhi, P. Beerli, R. Vitalis, J.-M. Cornuet, J. Huelsenbeck, M. Foll, Z. Yang, F. Rousset, D. Balding, and L. Excoffier. 2010. In defense of model-based inference in phylogeography. Molecular Ecology 19(3): 436–446.
  • Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. 2nd ed. Springer-Verlag, New York.
  • Bernardo, J. 1979. Reference posterior distributions for Bayesian inference (with discussion). J. Royal Statist. Society Series B 41: 113–147.
  • Billingsley, P. 1995. Probability and Measure. 3rd ed. New York: John Wiley.
  • Burdzy, K. 2009. The Search for Certainty. Singapore: World Scientific.
  • de Finetti, B. 1974. Theory of Probability, vol. 1. New York: John Wiley.
  • DeGroot, M. 1970. Optimal Statistical Decisions. New York: McGraw-Hill.
  • Diaconis, P. and D. Freedman. 1986. On the consistency of Bayes estimates. Ann. Statist. 14: 1–26.
  • Gelman, A. 2008. Objections to Bayesian statistics. Bayesian Analysis 3(3): 445–450.
  • Gelman, A., J. Carlin, H. Stern, and D. Rubin. 2001. Bayesian Data Analysis. 2nd ed. New York: Chapman and Hall, New York.
  • Ibragimov, I. and R. Has'minskii. 1981. Statistical Estimation. Asymptotic Theory. New York: Springer-Verlag.
  • Jeffreys, H. 1931. Scientific Inference. 1st ed. Cambridge: The University Press.
  • –-. 1939. Theory of Probability. 1st ed. Oxford: The Clarendon Press.
  • Keynes, J. 1920. A Treatise on Probability. London: Macmillan and Co.
  • Laplace, P. 1795. Essai Philosophique sur les Probabilités. Epistémé, Paris: Christian Bourgeois. Reprinted in 1986.
  • Lehmann, E. and G. Casella. 1998. Theory of Point Estimation (revised edition). Springer-Verlag, New York.
  • von Mises, R. 1957. Probability, Statistics, and Truth. Dover, New York.
  • Popper, K. and D. Miller. 1983. The Impossibility of Inductive Probability. Nature 310: 434.
  • Robert, C. 1993. Prior Feedback: A Bayesian approach to maximum likelihood estimation. Comput. Statist. 8: 279–294.
  • –-. 2001. The Bayesian Choice. 2nd ed. Springer-Verlag, New York.
  • Robert, C. and G. Casella. 2004. Monte Carlo Statistical Methods. 2nd ed. Springer-Verlag, New York.
  • Robert, C., N. Chopin, and J. Rousseau. 2009. Theory of Probability revisited (with discussion). Statist. Science 24(2): 141–172 and 191–194.
  • Savage, L. 1954. The Foundations of Statistical Inference. New York: John Wiley.
  • Stigler, S. 1986. The History of Statistics. Cambridge: Belknap.
  • Templeton, A. 2008. Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular Ecology 18(2): 319–331.
  • Welch, B. and H. Peers. 1963. On formulae for confidence points based on integrals of weighted likelihoods. J. Royal Statist. Society Series B 25: 318–329.

See also

  • Related item: Larry Wasserman. Comment on article by Robert et al. Bayesian Anal., Vol. 5, Iss. 2(2010), 223-228.
  • Related item: Andrew Gelman. Comment on article by Robert. Bayesian Anal., Vol. 5, Iss. 2(2010), 229-232.
  • Related item: Krysztof Burdzy. Comment on article by Robert. Bayesian Anal., Vol. 5, Iss. 2(2010), 233-236.