Bayesian Analysis
- Bayesian Anal.
- Volume 5, Number 4 (2010), 765-785.
Objective Bayesian estimation for the number of species
Full-text: Open access
Abstract
Objective priors have been used in Bayesian models for estimating the number of species in a population, but they have not been examined in depth. Here we derive the form of two objective priors, using Bernardo's reference method and Jeffreys' rule, based on the mixed-Poisson likelihood used in the single-abundance-sample species problem. These derivations are based on asymptotic results for estimates of integer-valued parameters. The factored form of these priors justifies the use of independent prior distributions for the parameter of interest (the number of species) and the nuisance parameters (of the stochastic abundance distribution). We find that the reference prior is preferable overall to the prior resulting from Jeffreys' rule. Although a comprehensive objective Bayesian approach can become analytically intractable for more complicated models, the essence of the approach can be upheld in practice. We analyze several datasets to show that the method can be implemented in practice and that it yields good results, comparable with current competing methods.
Article information
Source
Bayesian Anal., Volume 5, Number 4 (2010), 765-785.
Dates
First available in Project Euclid: 19 June 2012
Permanent link to this document
https://projecteuclid.org/euclid.ba/1340110854
Digital Object Identifier
doi:10.1214/10-BA527
Mathematical Reviews number (MathSciNet)
MR2740156
Zentralblatt MATH identifier
1330.62110
Keywords
Jeffreys' prior mixed-Poisson noninformative prior reference prior species richness estimation
Citation
Barger, Kathryn; Bunge, John. Objective Bayesian estimation for the number of species. Bayesian Anal. 5 (2010), no. 4, 765--785. doi:10.1214/10-BA527. https://projecteuclid.org/euclid.ba/1340110854
References
- Barger, K. and Bunge, J. (2008). "Bayesian estimation of the number of species using noninformative priors." Biometrical Journal, 50: 1064–1076.
- Behnke, A., Bunge, J., Barger, K., Breiner, H.-W., Alla, V., and Stoeck, T. (2006). "Microeukaryote community patterns along an O$_2$/H$_2$S gradient in a supersulfidic anoxic fjord (Framvaren, Norway)." Applied and Environmental Microbiology, 72: 3626–3636.
- Berger, J., Bernardo, J., and Sun, D. (2008). "Reference Priors for Discrete Parameter Spaces." Technical Report, Duke University.
- Bernardo, J. M. (1979). "Reference posterior distributions for Bayesian inference." Journal of the Royal Statistical Society Series B, 41: 113–147. Mathematical Reviews (MathSciNet): MR547240
- Bernardo, J. M. and Ramón, J. M. (1998). "An introduction to Bayesian reference analysis: Inference on the ratio of multinomial parameters." The Statistician, 47: 101–135.
- Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory. New York: Wiley. Mathematical Reviews (MathSciNet): MR1274699
- Boender, C. G. E. and Rinnooy Kan, A. H. G. (1987). "A multinomial Bayesian approach to the estimation of population and vocabulary size." Biometrika, 74: 849–856. Mathematical Reviews (MathSciNet): MR919853
Zentralblatt MATH: 0628.62026
Digital Object Identifier: doi:10.1093/biomet/74.4.849 - Böhning, D. and Schön, D. (2005). "Nonparametric maximum likelihood estimation of population size based on the counting distribution." Journal of the Royal Statistical Society Series C, 54: 721–737. Mathematical Reviews (MathSciNet): MR2196146
Zentralblatt MATH: 05188708
Digital Object Identifier: doi:10.1111/j.1467-9876.2005.05324.x - Bunge, J. and Barger, K. (2008). "Parametric models for estimating the number of classes." Biometrical Journal, 50: 971–982.
- Chao, A. (1987). "Estimating the population size for capture-recapture data with unequal catchability." Biometrics, 43: 783–791.
- Chao, A. and Bunge, J. (2002). "Estimating the number of species in a stochastic abundance model." Biometrics, 58: 531–539. Mathematical Reviews (MathSciNet): MR1925550
Digital Object Identifier: doi:10.1111/j.0006-341X.2002.00531.x
Zentralblatt MATH: 1210.62225 - Chao, A. and Lee, S.-M. (1992). "Estimating the number of classes via sample coverage." Journal of the American Statistical Association, 87: 210–217. Mathematical Reviews (MathSciNet): MR1158639
Zentralblatt MATH: 0850.62145
Digital Object Identifier: doi:10.1080/01621459.1992.10475194 - Chao, A. and Shen, T. J. (2003). Program SPADE (Species Prediction And Diversity Estimation), Program and Users Guide published at http://chao.stat.nthu.edu.tw.
- Efron, B. and Thisted, R. (1976). "Estimating the number of unseen species: How many words did Shakespeare know?" Biometrika, 63: 435–447. Zentralblatt MATH: 0344.62088
- Esty, W. W. (1986). "Estimation of the size of a coinage: A survey and comparison of methods." Numismatic Chronicle, 146: 185–215. Mathematical Reviews (MathSciNet): MR925622
- Farcomeni, A. and Tardella, L. (2010). "Reference Bayesian methods for recapture models with heterogeneity." Test, 19: 187–208. Mathematical Reviews (MathSciNet): MR2610924
Zentralblatt MATH: 1203.62028
Digital Object Identifier: doi:10.1007/s11749-009-0147-9 - Favaro, S., Lijoi, A., Mena, R., and Prünster, I. (2009). "Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior." Journal of the Royal Statistical Society Series B, 71: 993–1008. Mathematical Reviews (MathSciNet): MR2750254
Digital Object Identifier: doi:10.1111/j.1467-9868.2009.00717.x - Ferguson, T. S. (1973). "A Bayesian analysis of some nonparametric problems." Annals of Statistics, 1: 209–230. Mathematical Reviews (MathSciNet): MR350949
Zentralblatt MATH: 0255.62037
Digital Object Identifier: doi:10.1214/aos/1176342360
Project Euclid: euclid.aos/1176342360 - Fisher, R. A., Corbet, A. S., and Williams, C. B. (1943). "The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population." Journal of Animal Ecology, 12: 42–58.
- George, E. I. and Robert, C. P. (1992). "Capture-recapture estimation via Gibbs sampling." Biometrika, 79: 677–683.
- Gutiérrez-Peña, E. and Rueda, R. (2003). "Reference priors for exponential families." Journal of Statistical Planning and Inference, 110: 35–54. Mathematical Reviews (MathSciNet): MR1944632
Zentralblatt MATH: 1092.62519
Digital Object Identifier: doi:10.1016/S0378-3758(01)00281-6 - Hill, B. M. (1979). "Posterior moments of the number of species in a finite population and the posterior probability of finding a new species." Journal of the American Statistical Association, 74: 668–673. Mathematical Reviews (MathSciNet): MR548263
Zentralblatt MATH: 0417.62079
Digital Object Identifier: doi:10.1080/01621459.1979.10481668 - Hong, S.-H., Bunge, J., Jeon, S.-O., and Epstein, S. S. (2006). "Predicting microbial species richness." Proceedings of the National Academy of Sciences, 103: 117–122.
- Irony, T. Z. and Singpurwalla, N. D. (1997). "Non-informative priors do not exist: A dialogue with José M. Bernardo." Journal of Statistical Planning and Inference, 65: 159–189. Mathematical Reviews (MathSciNet): MR1619672
Digital Object Identifier: doi:10.1016/S0378-3758(97)00074-8 - Jeffreys, H. (1939/1961). Theory of Probability. Oxford: University Press, 1961 edition. Mathematical Reviews (MathSciNet): MR187257
- –- (1946). "An invariant form for the prior probability in estimation problems." Proceedings of the Royal Society of London Series A, 186: 453–461.
- Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. (1998). "Markov Chain Monte Carlo in practice: A roundtable discussion." American Statistician, 52: 93–100. Mathematical Reviews (MathSciNet): MR1628427
- Lewins, W. A. and Joanes, D. N. (1984). "Bayesian estimation of the number of species." Biometrics, 40: 323–328.
- Lijoi, A., Mena, R., and Prünster, I. (2007). "Bayesian nonparametric estimation of the probability of discovering a new species." Biometrika, 94: 769–786. Mathematical Reviews (MathSciNet): MR2416792
Zentralblatt MATH: 1156.62374
Digital Object Identifier: doi:10.1093/biomet/asm061 - Lindley, D. V. (1956). "On a measure of the information provided by an experiment." Annals of Mathematical Statistics, 27: 986–1005. Mathematical Reviews (MathSciNet): MR83936
Zentralblatt MATH: 0073.14103
Digital Object Identifier: doi:10.1214/aoms/1177728069
Project Euclid: euclid.aoms/1177728069 - Lindsay, B. G. and Roeder, K. (1987). "A unified treatment of integer parameter models." Journal of the American Statistical Association, 82: 758–764. Mathematical Reviews (MathSciNet): MR909980
Zentralblatt MATH: 0633.62026
Digital Object Identifier: doi:10.1080/01621459.1987.10478496 - Liseo, B. (1993). "Elimination of nuisance parameters with reference priors." Biometrika, 80: 295–304. Mathematical Reviews (MathSciNet): MR1243505
Zentralblatt MATH: 0778.62025
Digital Object Identifier: doi:10.1093/biomet/80.2.295 - Lloyd, C. J., Yip, P. S. F., and Chan, K. S. (1999). "Estimating the number of faults: Efficiency of removal, recapture, and seeding." IEEE Transactions on Reliability, 48: 369–376.
- Madigan, D. and York, J. C. (1997). "Bayesian methods for estimation of the size of a closed population." Biometrika, 84: 19–31. Mathematical Reviews (MathSciNet): MR1450189
Zentralblatt MATH: 0887.62029
Digital Object Identifier: doi:10.1093/biomet/84.1.19 - Mao, C. X. and Lindsay, B. G. (2007). "Estimating the number of classes." Annals of Statistics, 35: 917–930. Mathematical Reviews (MathSciNet): MR2336874
Zentralblatt MATH: 1117.62045
Digital Object Identifier: doi:10.1214/009053606000001280
Project Euclid: euclid.aos/1183667299 - Quince, C., Curtis, T. P., and Sloan, W. T. (2008). "The rational exploration of microbial diversity." International Society for Microbial Ecology Journal, 2: 997–1006.
- Raftery, A. E. (1987). "Inference and prediction for a general order statistic model with unknown population size." Journal of the American Statistical Association, 82: 1163–1168. Mathematical Reviews (MathSciNet): MR922181
Zentralblatt MATH: 0629.62011
Digital Object Identifier: doi:10.1080/01621459.1987.10478554 - –- (1988). "Inference for the binomial N parameter: A hierarchical Bayes approach." Biometrika, 75: 223–228.
- Rissanen, J. (1983). "A universal prior for integers and estimation by minimum description length." Annals of Statistics, 11: 416–431. Mathematical Reviews (MathSciNet): MR696056
Zentralblatt MATH: 0513.62005
Digital Object Identifier: doi:10.1214/aos/1176346150
Project Euclid: euclid.aos/1176346150 - Rodrigues, J., Milan, L. A., and Leite, J. G. (2001). "Hierarchical Bayesian estimation for the number of species." Biometrical Journal, 43: 737–746. Mathematical Reviews (MathSciNet): MR1862606
Digital Object Identifier: doi:10.1002/1521-4036(200110)43:6<737::AID-BIMJ737>3.0.CO;2-W
Zentralblatt MATH: 0988.62069 - Sanathanan, L. (1972). "Estimating the size of a multinomial population." Annals of Mathematical Statistics, 43: 142–152. Mathematical Reviews (MathSciNet): MR298815
Zentralblatt MATH: 0241.62007
Digital Object Identifier: doi:10.1214/aoms/1177692709
Project Euclid: euclid.aoms/1177692709 - Sandland, R. L. and Cormack, R. M. (1984). "Statistical inference for Poisson and multinomial models for capture-recapture experiments." Biometrika, 71: 27–33.
- Sichel, H. S. (1997). "Modelling species-abundance frequencies and species-individual functions with the generalized inverse Gaussian-Poisson distribution." South African Statistical Journal, 31: 13–37. Zentralblatt MATH: 0888.62115
- Smith, P. J. (1991). "Bayesian analyses for a multiple capture-recapture model." Biometrika, 78: 399–407.
- Stoeck, T., Kasper, J., Bunge, J., Leslin, C., Ilyin, V., and Epstein, S. (2007). "Protistan diversity in the arctic: A case of paleoclimate shaping modern biodiversity?" Public Library of Science ONE, 2: e728.
- Tardella, L. (2002). "A new Bayesian method for nonparametric capture-recapture models in presence of heterogeneity." Biometrika, 89: 807–817.
- Wang, J. and Lindsay, B. G. (2005). "A penalized nonparametric maximum likelihood approach to species richness estimation." Journal of the American Statistical Association, 100: 942–959. Mathematical Reviews (MathSciNet): MR2201021
Zentralblatt MATH: 1117.62439
Digital Object Identifier: doi:10.1198/016214504000002005 - Wang, J. P. (2010). "Estimating species richness by a Poisson-compound gamma model." Biometrika, 97: 727–740. Mathematical Reviews (MathSciNet): MR2672494
Zentralblatt MATH: 1195.62167
Digital Object Identifier: doi:10.1093/biomet/asq026 - Wang, X., He, C. Z., and Sun, D. (2007). "Bayesian population estimation for small sample capture-recapture data using noninformative priors." Journal of Statistical Planning and Inference, 137: 1099–1118. Mathematical Reviews (MathSciNet): MR2301466
Zentralblatt MATH: 1107.62024
Digital Object Identifier: doi:10.1016/j.jspi.2006.03.004 - Zhang, H. and Stern, H. (2005). "Investigation of a generalized multinomial model for species data." Journal of Statistical Computation and Simulation, 75: 347–362. Mathematical Reviews (MathSciNet): MR2142716
Zentralblatt MATH: 1061.62183
Digital Object Identifier: doi:10.1080/0094965042000191631 - –- (2009). "Sample size calculation for finding unseen species." Bayesian Analysis, 4: 763–792.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Objective Priors: An Introduction for Frequentists
Ghosh, Malay, Statistical Science, 2011 - Objective Bayesian Inference for Bilateral Data
M’lan, Cyr Emile and Chen, Ming-Hui, Bayesian Analysis, 2015 - Hellinger Distance and Non-informative Priors
Shemyakin, Arkady, Bayesian Analysis, 2014
- Objective Priors: An Introduction for Frequentists
Ghosh, Malay, Statistical Science, 2011 - Objective Bayesian Inference for Bilateral Data
M’lan, Cyr Emile and Chen, Ming-Hui, Bayesian Analysis, 2015 - Hellinger Distance and Non-informative Priors
Shemyakin, Arkady, Bayesian Analysis, 2014 - On the invariance of noninformative priors
Datta, Gauri Sankar and Ghosh, Malay, The Annals of Statistics, 1996 - Default priors for Gaussian processes
Paulo, Rui, The Annals of Statistics, 2005 - Objective Bayesian Analysis for Gaussian Hierarchical Models with Intrinsic Conditional Autoregressive Priors
Keefe, Matthew J., Ferreira, Marco A. R., and Franck, Christopher T., Bayesian Analysis, 2019 - On Divergence Measures Leading to Jeffreys and Other Reference Priors
Liu, Ruitao, Chakrabarti, Arijit, Samanta, Tapas, Ghosh, Jayanta K., and Ghosh, Malay, Bayesian Analysis, 2014 - Measuring statistical significance for full Bayesian methods in microarray analyses
Cao, Jing and Zhang, Song, Bayesian Analysis, 2010 - Reference priors for exponential families with increasing dimension
Clarke, Bertrand and Ghosal, Subhashis, Electronic Journal of Statistics, 2010 - Bayesian Indirect Inference Using a Parametric Auxiliary Model
Drovandi, Christopher C., Pettitt, Anthony N., and Lee, Anthony, Statistical Science, 2015