Advances in Theoretical and Mathematical Physics

Hermitian–Einstein connections on polystable parabolic principal Higgs bundles

Indranil Biswas and Matthias Stemmler

Full-text: Open access

Abstract

Given a smooth complex projective variety $X$ and a smooth divisor $D$ on $X$, we prove the existence of Hermitian–Einstein connections, with respect to a Poincaré-type metric on $X \setminus D$, on polystable parabolic principal Higgs bundles with parabolic structure over $D$, satisfying certain conditions on their restriction to $D$.

Article information

Source
Adv. Theor. Math. Phys., Volume 15, Number 5 (2011), 1503-1521.

Dates
First available in Project Euclid: 10 October 2012

Permanent link to this document
https://projecteuclid.org/euclid.atmp/1349879115

Mathematical Reviews number (MathSciNet)
MR2989838

Zentralblatt MATH identifier
1258.83007

Citation

Biswas, Indranil; Stemmler, Matthias. Hermitian–Einstein connections on polystable parabolic principal Higgs bundles. Adv. Theor. Math. Phys. 15 (2011), no. 5, 1503--1521. https://projecteuclid.org/euclid.atmp/1349879115


Export citation