Advanced Studies in Pure Mathematics

The Moduli Space of Rational Elliptic Surfaces

Gert Heckman and Eduard Looijenga

Full-text: Open access

Abstract

We show that the moduli space of rational elliptic surfaces admitting a section is locally a complex hyperbolic variety of dimension 8. We compare its Satake-Baily-Borel compactification with a compactification obtained by means of geometric invariant theory, considered by Miranda.

Article information

Source
Algebraic Geometry 2000, Azumino, S. Usui, M. Green, L. Illusie, K. Kato, E. Looijenga, S. Mukai and S. Saito, eds. (Tokyo: Mathematical Society of Japan, 2002), 185-248

Dates
Received: 11 January 2001
First available in Project Euclid: 27 January 2019

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1548550681

Digital Object Identifier
doi:10.2969/aspm/03610185

Mathematical Reviews number (MathSciNet)
MR1971517

Zentralblatt MATH identifier
1063.14044

Subjects
Primary: 14J15: Moduli, classification: analytic theory; relations with modular forms [See also 32G13] 14J27: Elliptic surfaces 32N10: Automorphic forms

Keywords
rational elliptic fibration moduli ball quotient

Citation

Heckman, Gert; Looijenga, Eduard. The Moduli Space of Rational Elliptic Surfaces. Algebraic Geometry 2000, Azumino, 185--248, Mathematical Society of Japan, Tokyo, Japan, 2002. doi:10.2969/aspm/03610185. https://projecteuclid.org/euclid.aspm/1548550681


Export citation