Advanced Studies in Pure Mathematics

On pluricanonical systems of algebraic varieties of general type

Meng Chen

Full-text: Open access

Abstract

We extend Kollár's technique to look for an explicit function $h(n)$ with $\varphi_m$ birational onto its image for all integers $m \geq h(n)$ and for all $n$-dimensional nonsingular projective varieties of general type.

Article information

Source
Algebraic Geometry in East Asia — Seoul 2008, J. H. Keum, S. Kondō, K. Konno and K. Oguiso, eds. (Tokyo: Mathematical Society of Japan, 2010), 215-236

Dates
Received: 22 April 2009
Revised: 11 September 2009
First available in Project Euclid: 24 November 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1543085641

Digital Object Identifier
doi:10.2969/aspm/06010215

Mathematical Reviews number (MathSciNet)
MR2761928

Zentralblatt MATH identifier
1214.14009

Subjects
Primary: 14E05: Rational and birational maps 14E25: Embeddings 14E30: Minimal model program (Mori theory, extremal rays)

Keywords
Pluricanonical maps pluricanonical systems varieties of general type

Citation

Chen, Meng. On pluricanonical systems of algebraic varieties of general type. Algebraic Geometry in East Asia — Seoul 2008, 215--236, Mathematical Society of Japan, Tokyo, Japan, 2010. doi:10.2969/aspm/06010215. https://projecteuclid.org/euclid.aspm/1543085641


Export citation