## Advanced Studies in Pure Mathematics

- Adv. Stud. Pure Math.
- Nonlinear Dynamics in Partial Differential Equations, S. Ei, S. Kawashima, M. Kimura and T. Mizumachi, eds. (Tokyo: Mathematical Society of Japan, 2015), 175 - 182

### Blow up points and the Morse indices of solutions to the Liouville equation: inhomogeneous case

#### Abstract

Let us consider the Liouville equation $$ -\Delta u = \lambda V(x) e^u \quad\text{in}\ \Omega,\quad u = 0\quad \text{on}\ \partial\Omega, $$ where $\Omega$ is a smooth bounded domain in $\mathbb{R}^2$, $V(x) \gt 0$ is a given function in $C^1(\overline{\Omega})$, and $\lambda \gt 0$ is a constant. Let $\{u_n\}$ be an $m$-point blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$, in the sense that $$ \lambda_n\int_\Omega V(x)e^{u_n} dx \to 8\pi m\quad \text{as}\ n\to\infty $$ for $m\in\mathbb{N}$. We prove that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large. This extends the main result of the recent paper [13] to an inhomogeneous ($V \not\equiv 1$) case.

#### Article information

**Dates**

Received: 2 November 2011

Revised: 22 January 2013

First available in Project Euclid:
30 October 2018

**Permanent link to this document**

https://projecteuclid.org/
euclid.aspm/1540934212

**Digital Object Identifier**

doi:10.2969/aspm/06410175

**Mathematical Reviews number (MathSciNet)**

MR3381201

**Zentralblatt MATH identifier**

1336.35140

**Subjects**

Primary: 35B40: Asymptotic behavior of solutions 35J25: Boundary value problems for second-order elliptic equations

**Keywords**

Morse index blow up point Liouville equation

#### Citation

Takahashi, Futoshi. Blow up points and the Morse indices of solutions to the Liouville equation: inhomogeneous case. Nonlinear Dynamics in Partial Differential Equations, 175--182, Mathematical Society of Japan, Tokyo, Japan, 2015. doi:10.2969/aspm/06410175. https://projecteuclid.org/euclid.aspm/1540934212