Advanced Studies in Pure Mathematics

On the Poles of Riemannian Manifolds of Nonnegative Curvature

Kunio Sugahara

Full-text: Open access

Abstract

The diameter of the set of poles on Riemannian manifolds of nonnegative sectional curvature is estimated by a constant defined by Maeda. We study the constant for elliptic paraboloids and show that our estimate is sharp.

Article information

Source
Progress in Differential Geometry, K. Shiohama, ed. (Tokyo: Mathematical Society of Japan, 1993), 321-331

Dates
Received: 12 March 1991
Revised: 29 May 1991
First available in Project Euclid: 15 August 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1534359534

Digital Object Identifier
doi:10.2969/aspm/02210321

Mathematical Reviews number (MathSciNet)
MR1274957

Zentralblatt MATH identifier
0793.53043

Citation

Sugahara, Kunio. On the Poles of Riemannian Manifolds of Nonnegative Curvature. Progress in Differential Geometry, 321--331, Mathematical Society of Japan, Tokyo, Japan, 1993. doi:10.2969/aspm/02210321. https://projecteuclid.org/euclid.aspm/1534359534


Export citation