Advanced Studies in Pure Mathematics

Moduli of Einstein Metrics on a K3 Surface and Degeneration of Type I

Ryoichi Kobayashi

Full-text: Open access

Abstract

This is an expository paper on the moduli space of K3 surfaces with Kähler–Einstein metric. We construct the universal family of Kähler–Einstein metrics on a K3 surface and show that it necessarily includes singular metrics such that some embedded 2-spheres have zero volume. We analyze this degeneration of Kähler–Einstein metrics in detail.

Article information

Source
Kähler Metric and Moduli Spaces, T. Ochiai, ed. (Tokyo: Mathematical Society of Japan, 1990), 257-311

Dates
Received: 22 February 1990
First available in Project Euclid: 17 June 2018

Permanent link to this document
https://projecteuclid.org/ euclid.aspm/1529259551

Digital Object Identifier
doi:10.2969/aspm/01820257

Mathematical Reviews number (MathSciNet)
MR1145251

Zentralblatt MATH identifier
0755.32023

Citation

Kobayashi, Ryoichi. Moduli of Einstein Metrics on a K3 Surface and Degeneration of Type I. Kähler Metric and Moduli Spaces, 257--311, Mathematical Society of Japan, Tokyo, Japan, 1990. doi:10.2969/aspm/01820257. https://projecteuclid.org/euclid.aspm/1529259551


Export citation