Afrika Statistika

Hellinger Distance Estimation of Strongly Dependent Gaussian Random Fields

Aubin Yao N'DRI, Ouagnina HILI, and Gueï Cyrille OKOU

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The Minimum Hellinger Distance Estimator (MHDE) of density function is investigated for stationary long memory (long-range dependent) random fields observed over a finite set of spatial points. A general result on the consistency of the MHD Estimator is first obtained and then, under some mild assumptions, the asymptotic distribution of this estimator is established.


L'estimateur du minimum de distance de Hellinger est étudié pour des champs aléatoires stationnaires à longue mémoire observés sur un ensemble fini de points de l'espace. Un résultat général sur la convergence presque sû de cet estimateur est d'abord obtenue, puis, sous certaines hypothèses, la distribution asymptotique est établie.

Article information

Afr. Stat., Volume 14, Number 1 (2019), 1937-1950.

First available in Project Euclid: 24 May 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G10: Stationary processes 60G15: Gaussian processes 60G60: Random fields 62F12: Asymptotic properties of estimators

asymptotic properties strongly dependence Hellinger distance estimation random field


N'DRI, Aubin Yao; HILI, Ouagnina; OKOU, Gueï Cyrille. Hellinger Distance Estimation of Strongly Dependent Gaussian Random Fields. Afr. Stat. 14 (2019), no. 1, 1937--1950. doi:10.16929/as/2019.1937.143.

Export citation