Analysis & PDE

  • Anal. PDE
  • Volume 12, Number 6 (2019), 1513-1596.

Gross–Pitaevskii dynamics for Bose–Einstein condensates

Christian Brennecke and Benjamin Schlein

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study the time-evolution of initially trapped Bose–Einstein condensates in the Gross–Pitaevskii regime. We show that condensation is preserved by the many-body evolution and that the dynamics of the condensate wave function can be described by the time-dependent Gross–Pitaevskii equation. With respect to previous works, we provide optimal bounds on the rate of condensation (i.e., on the number of excitations of the Bose–Einstein condensate). To reach this goal, we combine the method of Lewin, Nam and Schlein (2015), who analyzed fluctuations around the Hartree dynamics for N-particle initial data in the mean-field regime, with ideas of Benedikter, de Oliveira and Schlein (2015), who considered the evolution of Fock-space initial data in the Gross–Pitaevskii regime.

Article information

Source
Anal. PDE, Volume 12, Number 6 (2019), 1513-1596.

Dates
Received: 15 March 2018
Revised: 26 June 2018
Accepted: 25 October 2018
First available in Project Euclid: 12 March 2019

Permanent link to this document
https://projecteuclid.org/euclid.apde/1552356129

Digital Object Identifier
doi:10.2140/apde.2019.12.1513

Mathematical Reviews number (MathSciNet)
MR3921312

Zentralblatt MATH identifier
07061133

Subjects
Primary: 35Q40: PDEs in connection with quantum mechanics 81V70: Many-body theory; quantum Hall effect

Keywords
Bose–Einstein condensates quantum dynamics Gross–Pitaevskii equation

Citation

Brennecke, Christian; Schlein, Benjamin. Gross–Pitaevskii dynamics for Bose–Einstein condensates. Anal. PDE 12 (2019), no. 6, 1513--1596. doi:10.2140/apde.2019.12.1513. https://projecteuclid.org/euclid.apde/1552356129


Export citation

References

  • R. Adami, F. Golse, and A. Teta, “Rigorous derivation of the cubic NLS in dimension one”, J. Stat. Phys. 127:6 (2007), 1193–1220.
  • Z. Ammari and S. Breteaux, “Propagation of chaos for many-boson systems in one dimension with a point pair-interaction”, Asymptot. Anal. 76:3-4 (2012), 123–170.
  • Z. Ammari and F. Nier, “Mean field limit for bosons and propagation of Wigner measures”, J. Math. Phys. 50:4 (2009), art. id. 042107.
  • Z. Ammari, M. Falconi, and B. Pawilowski, “On the rate of convergence for the mean field approximation of bosonic many-body quantum dynamics”, Commun. Math. Sci. 14:5 (2016), 1417–1442.
  • I. Anapolitanos and M. Hott, “A simple proof of convergence to the Hartree dynamics in Sobolev trace norms”, J. Math. Phys. 57:12 (2016), 122108, 8.
  • C. Bardos, F. Golse, and N. J. Mauser, “Weak coupling limit of the $N$-particle Schrödinger equation”, Methods Appl. Anal. 7:2 (2000), 275–293.
  • G. Ben Arous, K. Kirkpatrick, and B. Schlein, “A central limit theorem in many-body quantum dynamics”, Comm. Math. Phys. 321:2 (2013), 371–417.
  • N. Benedikter, G. de Oliveira, and B. Schlein, “Quantitative derivation of the Gross–Pitaevskii equation”, Comm. Pure Appl. Math. 68:8 (2015), 1399–1482.
  • C. Boccato, S. Cenatiempo, and B. Schlein, “Quantum many-body fluctuations around nonlinear Schrödinger dynamics”, Ann. Henri Poincaré 18:1 (2017), 113–191.
  • C. Boccato, C. Brennecke, S. Cenatiempo, and B. Schlein, “Bogoliubov theory in the Gross–Pitaevskii limit”, preprint, 2018.
  • C. Boccato, C. Brennecke, S. Cenatiempo, and B. Schlein, “Complete Bose–Einstein condensation in the Gross–Pitaevskii regime”, Comm. Math. Phys. 359:3 (2018), 975–1026.
  • X. Chen, “Second order corrections to mean field evolution for weakly interacting bosons in the case of three-body interactions”, Arch. Ration. Mech. Anal. 203:2 (2012), 455–497.
  • X. Chen and J. Holmer, “Correlation structures, many-body scattering processes, and the derivation of the Gross–Pitaevskii hierarchy”, Int. Math. Res. Not. 2016:10 (2016), 3051–3110.
  • X. Chen and J. Holmer, “Focusing quantum many-body dynamics, II: The rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation from 3D”, Anal. PDE 10:3 (2017), 589–633.
  • T. Chen, C. Hainzl, N. Pavlović, and R. Seiringer, “Unconditional uniqueness for the cubic Gross–Pitaevskii hierarchy via quantum de Finetti”, Comm. Pure Appl. Math. 68:10 (2015), 1845–1884.
  • A. Elgart and B. Schlein, “Mean field dynamics of boson stars”, Comm. Pure Appl. Math. 60:4 (2007), 500–545.
  • L. Erdős and H.-T. Yau, “Derivation of the nonlinear Schrödinger equation from a many body Coulomb system”, Adv. Theor. Math. Phys. 5:6 (2001), 1169–1205.
  • L. Erdős, B. Schlein, and H.-T. Yau, “Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate”, Comm. Pure Appl. Math. 59:12 (2006), 1659–1741.
  • L. Erdős, B. Schlein, and H.-T. Yau, “Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems”, Invent. Math. 167:3 (2007), 515–614.
  • L. Erdős, A. Michelangeli, and B. Schlein, “Dynamical formation of correlations in a Bose–Einstein condensate”, Comm. Math. Phys. 289:3 (2009), 1171–1210.
  • L. Erdős, B. Schlein, and H.-T. Yau, “Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential”, J. Amer. Math. Soc. 22:4 (2009), 1099–1156.
  • L. Erdős, B. Schlein, and H.-T. Yau, “Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate”, Ann. of Math. $(2)$ 172:1 (2010), 291–370.
  • L. Erdős, B. Schlein, and H.-T. Yau, “Rigorous derivation of the Gross–Pitaevskii equation”, Phys. Rev. Lett. 98:4 (2002), art. id. 040404.
  • J. Fröhlich, A. Knowles, and A. Pizzo, “Atomism and quantization”, J. Phys. A 40:12 (2007), 3033–3045.
  • J. Fröhlich, A. Knowles, and S. Schwarz, “On the mean-field limit of bosons with Coulomb two-body interaction”, Comm. Math. Phys. 288:3 (2009), 1023–1059.
  • J. Gagelman and H. Yserentant, “A spectral method for Schrödinger equations with smooth confinement potentials”, Numer. Math. 122:2 (2012), 383–398.
  • J. Ginibre and G. Velo, “The classical field limit of scattering theory for nonrelativistic many-boson systems, I”, Comm. Math. Phys. 66:1 (1979), 37–76.
  • J. Ginibre and G. Velo, “The classical field limit of scattering theory for nonrelativistic many-boson systems, II”, Comm. Math. Phys. 68:1 (1979), 45–68.
  • P. Grech and R. Seiringer, “The excitation spectrum for weakly interacting bosons in a trap”, Comm. Math. Phys. 322:2 (2013), 559–591.
  • M. Grillakis and M. Machedon, “Pair excitations and the mean field approximation of interacting bosons, I”, Comm. Math. Phys. 324:2 (2013), 601–636.
  • M. G. Grillakis, M. Machedon, and D. Margetis, “Second-order corrections to mean field evolution of weakly interacting bosons, I”, Comm. Math. Phys. 294:1 (2010), 273–301.
  • M. Grillakis, M. Machedon, and D. Margetis, “Second-order corrections to mean field evolution of weakly interacting bosons, II”, Adv. Math. 228:3 (2011), 1788–1815.
  • K. Hepp, “The classical limit for quantum mechanical correlation functions”, Comm. Math. Phys. 35 (1974), 265–277.
  • M. Jeblick, N. Leopold, and P. Pickl, “Derivation of the time dependent Gross–Pitaevskii equation in two dimensions”, preprint, 2016.
  • K. Kirkpatrick, B. Schlein, and G. Staffilani, “Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics”, Amer. J. Math. 133:1 (2011), 91–130.
  • S. Klainerman and M. Machedon, “On the uniqueness of solutions to the Gross–Pitaevskii hierarchy”, Comm. Math. Phys. 279:1 (2008), 169–185.
  • A. Knowles and P. Pickl, “Mean-field dynamics: singular potentials and rate of convergence”, Comm. Math. Phys. 298:1 (2010), 101–138.
  • E. Kuz, “Exact evolution versus mean field with second-order correction for bosons interacting via short-range two-body potential”, Differential Integral Equations 30:7-8 (2017), 587–630.
  • M. Lewin, P. T. Nam, and B. Schlein, “Fluctuations around Hartree states in the mean-field regime”, Amer. J. Math. 137:6 (2015), 1613–1650.
  • M. Lewin, P. T. Nam, S. Serfaty, and J. P. Solovej, “Bogoliubov spectrum of interacting Bose gases”, Comm. Pure Appl. Math. 68:3 (2015), 413–471.
  • E. H. Lieb and R. Seiringer, “Proof of Bose–Einstein condensation for dilute trapped gases”, Phys. Rev. Lett. 88:17 (2002), art. id. 170409.
  • E. H. Lieb, R. Seiringer, and J. Yngvason, “Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional”, Phys. Rev. A 61:4 (2000), 043602.
  • A. Michelangeli and A. Olgiati, “Gross–Pitaevskii non-linear dynamics for pseudo-spinor condensates”, J. Nonlinear Math. Phys. 24:3 (2017), 426–464.
  • D. Mitrouskas, S. Petrat, and P. Pickl, “Bogoliubov corrections and trace norm convergence for the Hartree dynamics”, preprint, 2016.
  • P. T. Nam and M. Napiórkowski, “A note on the validity of Bogoliubov correction to mean-field dynamics”, preprint, 2016.
  • P. T. Nam and M. Napiórkowski, “Bogoliubov correction to the mean-field dynamics of interacting bosons”, Adv. Theor. Math. Phys. 21:3 (2017), 683–738.
  • P. T. Nam, N. Rougerie, and R. Seiringer, “Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited”, Anal. PDE 9:2 (2016), 459–485.
  • A. Olgiati, “Remarks on the derivation of Gross–Pitaevskii equation with magnetic Laplacian”, pp. 257–266 in Advances in quantum mechanics, edited by A. Michelangeli and G. Dell'Antonio, Springer INdAM Ser. 18, Springer, 2017.
  • P. Pickl, “Derivation of the time dependent Gross–Pitaevskii equation with external fields”, Rev. Math. Phys. 27:1 (2015), 1550003, 45.
  • I. Rodnianski and B. Schlein, “Quantum fluctuations and rate of convergence towards mean field dynamics”, Comm. Math. Phys. 291:1 (2009), 31–61.
  • R. Seiringer, “The excitation spectrum for weakly interacting bosons”, Comm. Math. Phys. 306:2 (2011), 565–578.
  • H. Spohn, “Kinetic equations from Hamiltonian dynamics: Markovian limits”, Rev. Modern Phys. 52:3 (1980), 569–615.