Analysis & PDE

  • Anal. PDE
  • Volume 2, Number 2 (2009), 187-209.

On the global well-posedness of the one-dimensional Schrödinger map flow

Igor Rodnianski, Yanir Rubinstein, and Gigliola Staffilani

Full-text: Open access


We establish the global well-posedness of the initial value problem for the Schrödinger map flow for maps from the real line into Kähler manifolds and for maps from the circle into Riemann surfaces. This partially resolves a conjecture of W.-Y. Ding.

Article information

Anal. PDE, Volume 2, Number 2 (2009), 187-209.

Received: 13 November 2008
Revised: 25 February 2009
Accepted: 4 May 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]
Secondary: 53C44: Geometric evolution equations (mean curvature flow, Ricci flow, etc.) 35B10: Periodic solutions 32Q15: Kähler manifolds 42B35: Function spaces arising in harmonic analysis 15A23: Factorization of matrices

Schrödinger flow periodic NLS cubic NLS Strichartz estimates Kähler manifolds


Rodnianski, Igor; Rubinstein, Yanir; Staffilani, Gigliola. On the global well-posedness of the one-dimensional Schrödinger map flow. Anal. PDE 2 (2009), no. 2, 187--209. doi:10.2140/apde.2009.2.187.

Export citation


  • T. Aubin, Some nonlinear problems in Riemannian geometry, Springer, Berlin, 1998. 0896.53003
  • I. Bejenaru, A. D. Ionescu, and C. E. Kenig, “Global existence and uniqueness of Schrödinger maps in dimensions $d\geq 4$”, Adv. Math. 215:1 (2007), 263–291.
  • I. Bejenaru, A. D. Ionescu, C. E. Kenig, and D. Tataru, “Global Schrödinger maps”, preprint, 2008.
  • J. Bourgain, “Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations”, Geom. Funct. Anal. 3:2 (1993), 107–156.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, Courant Institute, New York, 2003.
  • R. V. Chacon and A. T. Fomenko, “Stokes' formula for Lie algebra valued connection and curvature forms”, Adv. Math. 88:2 (1991), 258–300.
  • N.-H. Chang, J. Shatah, and K. Uhlenbeck, :5 (2000), 590–602.
  • H. Chihara, “Schrödinger flow into almost Hermitian manifolds”, preprint, 2008.
  • W.-Y. Ding, “On the Schrödinger flows”, pp. 283–291 in Proceedings of the International Congress of Mathematicians (Beijing, 2002), vol. 2, Higher Education Press, 2002.
  • W. Ding and Y. Wang, “Schrödinger flow of maps into symplectic manifolds”, Sci. China Ser. A 41:7 (1998), 746–755.
  • W. Ding and Y. Wang, “Local Schrödinger flow into Kähler manifolds”, Sci. China Ser. A 44:11 (2001), 1446–1464.
  • B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern geometry–-methods and applications, vol. II, Graduate Texts in Math. 104, Springer, New York, 1985.
  • J. Eells, Jr. and J. H. Sampson, “Harmonic mappings of Riemannian manifolds”, Amer. J. Math. 86 (1964), 109–160.
  • J. Eichhorn, “The boundedness of connection coefficients and their derivatives”, Math. Nachr. 152 (1991), 145–158.
  • S. D. Eidelman and N. V. Zhitarashu, Parabolic boundary value problems, Operator Theory: Advances and Applications 101, Birkhäuser, Basel, 1998.
  • J. Ginibre, “Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain)”, pp. 163–187 (Exp. 796) in Séminaire Bourbaki, 1994/95, Astérisque 237, Soc. Mat. de France, Paris, 1996.
  • T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften 132, Springer, New York, 1966.
  • L. D. Landau and E. M. Lifschitz, “On the theory of the dispersion of magnetic permeability in ferromagnetic bodies”, Phys. Z. Sow. 8 (1935), 153–169. Reprinted as pp. 101–114 in Collected papers of L. D. Landau, Gordon and Breach, New York (1967), and as pp. 14–22 in a special issue of Ukr. J. Physics \bf53 (2008).
  • H. McGahagan, Some existence and uniqueness results for Schroedinger maps and Landau–Lifshitz–Maxwell equations, Ph.D. thesis, New York University, 2004.
  • H. McGahagan, “An approximation scheme for Schrödinger maps”, Comm. Partial Differential Equations 32:1-3 (2007), 375–400.
  • A. Nijenhuis, “On the holonomy groups of linear connections. IA. General properties of affine connections”, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 233–240.
  • P. Y. H. Pang, H.-Y. Wang, and Y.-D. Wang, “Schrödinger flow for maps into Kähler manifolds”, Asian J. Math. 5:3 (2001), 509–533.
  • P. Y. H. Pang, H.-Y. Wang, and Y.-D. Wang, “Schrödinger flow on Hermitian locally symmetric spaces”, Comm. Anal. Geom. 10:4 (2002), 653–681.
  • L. Schlesinger, “Parallelverschiebung und Krümmungstensor”, Math. Ann. 99 (1928), 413–434. 1512459
  • P.-L. Sulem, C. Sulem, and C. Bardos, “On the continuous limit for a system of classical spins”, Comm. Math. Phys. 107:3 (1986), 431–454.
  • C.-L. Terng and K. Uhlenbeck, “Schrödinger flows on Grassmannians”, pp. 235–256 in Integrable systems, geometry, and topology, edited by C.-L. Terng, AMS/IP Stud. Adv. Math. 36, Amer. Math. Soc., Providence, RI, 2006.
  • Y. L. Zhou, B. L. Guo, and S. B. Tan, “Existence and uniqueness of smooth solution for system of ferro-magnetic chain”, Sci. China Ser. A 34:3 (1991), 257–266.