Analysis & PDE

  • Anal. PDE
  • Volume 7, Number 8 (2014), 1851-1899.

Global gauges and global extensions in optimal spaces

Mircea Petrache and Tristan Rivière

Full-text: Open access

Abstract

We consider the problem of extending functions ϕ:SnSn to functions u:Bn+1Sn for n=2,3. We assume ϕ belongs to the critical space W1,n and we construct a W1,(n+1,)-controlled extension u. The Lorentz–Sobolev space W1,(n+1,) is optimal for such controlled extension. Then we use these results to construct global controlled gauges for L4-connections over trivial SU(2)-bundles in 4 dimensions. This result is a global version of the local Sobolev control of connections obtained by K. Uhlenbeck.

Article information

Source
Anal. PDE, Volume 7, Number 8 (2014), 1851-1899.

Dates
Received: 16 January 2014
Revised: 5 July 2014
Accepted: 11 August 2014
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731627

Digital Object Identifier
doi:10.2140/apde.2014.7.1851

Mathematical Reviews number (MathSciNet)
MR3318742

Zentralblatt MATH identifier
1328.46034

Subjects
Primary: 28A51: Lifting theory [See also 46G15] 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems
Secondary: 70S15: Yang-Mills and other gauge theories 58J05: Elliptic equations on manifolds, general theory [See also 35-XX]

Keywords
nonlinear extension nonlinear Sobolev space global gauge conformally invariant problem Yang–Mills Lorentz spaces Hopf lift

Citation

Petrache, Mircea; Rivière, Tristan. Global gauges and global extensions in optimal spaces. Anal. PDE 7 (2014), no. 8, 1851--1899. doi:10.2140/apde.2014.7.1851. https://projecteuclid.org/euclid.apde/1513731627


Export citation

References

  • D. R. Adams, “A note on Riesz potentials”, Duke Math. J. 42:4 (1975), 765–778.
  • L. V. Ahlfors, Möbius transformations in several dimensions, University of Minnesota, School of Mathematics, Minneapolis, MN, 1981.
  • M. F. Atiyah, N. J. Hitchin, and I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A 362:1711 (1978), 425–461.
  • Y. Bernard and T. Rivière, “Energy quantization for Willmore surfaces and applications”, Ann. of Math. $(2)$ 180:1 (2014), 87–136.
  • F. Bethuel, “The approximation problem for Sobolev maps between two manifolds”, Acta Math. 167:3-4 (1991), 153–206.
  • F. Bethuel and D. Chiron, “Some questions related to the lifting problem in Sobolev spaces”, pp. 125–152 in Perspectives in nonlinear partial differential equations, edited by H. Berestycki et al., Contemporary Mathematics 446, American Mathematical Society, Providence, RI, 2007.
  • F. Bethuel and F. Demengel, “Extensions for Sobolev mappings between manifolds”, Calc. Var. Partial Differential Equations 3:4 (1995), 475–491.
  • F. Bethuel and X. Zheng, “Density of smooth functions between two manifolds in Sobolev spaces”, J. Funct. Anal. 80:1 (1988), 60–75.
  • J. Bourgain, H. Brézis, and P. Mironescu, “Lifting in Sobolev spaces”, J. Anal. Math. 80 (2000), 37–86.
  • J. Bourgain, H. Brézis, and P. Mironescu, “$H\sp {1/2}$ maps with values into the circle: minimal connections, lifting, and the Ginzburg–Landau equation”, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 1–115.
  • H. Brézis and P. Mironescu, “Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces”, J. Evol. Equ. 1:4 (2001), 387–404.
  • H. Brézis and L. Nirenberg, “Degree theory and BMO, I: Compact manifolds without boundaries”, Selecta Math. $($N.S.$)$ 1:2 (1995), 197–263.
  • H. Brézis and L. Nirenberg, “Degree theory and BMO, II: Compact manifolds with boundaries”, Selecta Math. $($N.S.$)$ 2:3 (1996), 309–368.
  • R. R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, “Compensated compactness and Hardy spaces”, J. Math. Pures Appl. $(9)$ 72:3 (1993), 247–286.
  • S. K. Donaldson, “An application of gauge theory to four-dimensional topology”, J. Differential Geom. 18:2 (1983), 279–315.
  • D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, Mathematical Sciences Research Institute Publications 1, Springer, New York, 1984.
  • F. Gazzola, H.-C. Grunau, and G. Sweers, Polyharmonic boundary value problems: positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics 1991, Springer, Berlin, 2010.
  • L. Grafakos, Classical Fourier analysis, 2nd ed., Graduate Texts in Mathematics 249, Springer, New York, 2008.
  • F. Hang and F.-H. Lin, “Topology of Sobolev mappings”, Math. Res. Lett. 8:3 (2001), 321–330.
  • F. Hang and F.-H. Lin, “Topology of Sobolev mappings, II”, Acta Math. 191:1 (2003), 55–107.
  • R. Hardt and F.-H. Lin, “Mappings minimizing the $L\sp p$ norm of the gradient”, Comm. Pure Appl. Math. 40:5 (1987), 555–588.
  • R. Hardt and T. Rivière, “Connecting topological Hopf singularities”, Ann. Sc. Norm. Super. Pisa Cl. Sci. $(5)$ 2:2 (2003), 287–344.
  • R. Hardt and T. Rivière, “Connecting rational homotopy type singularities”, Acta Math. 200:1 (2008), 15–83.
  • R. Hardt, D. Kinderlehrer, and F.-H. Lin, “Existence and partial regularity of static liquid crystal configurations”, Comm. Math. Phys. 105:4 (1986), 547–570.
  • A. Hatcher, “Vector bundles and K-theory”, preprint, 2009, http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html.
  • F. Hélein, Applications harmoniques, lois de conservation et repères mobiles, Diderot, Paris, 1996. Translated as Harmonic maps, conservation laws and moving frames, 2nd ed., Cambridge Tracts in Mathematics 150, Cambridge University Press, 2002.
  • S. Hildebrandt, “Nonlinear elliptic systems and harmonic mappings”, pp. 481–615 in Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations (Beijing, 1980), vol. 1, edited by S. S. Chern and W.-t. Wu, Science Press, Beijing, 1982.
  • T. Isobe, “On global singularities of Sobolev mappings”, Math. Z. 252:4 (2006), 691–730.
  • E. Kuwert and Y. Li, “$W^{2,2}$-conformal immersions of a closed Riemann surface into $\R^n$”, Comm. Anal. Geom. 20:2 (2012), 313–340.
  • F. C. Marques and A. Neves, “Min-max theory and the Willmore conjecture”, Ann. of Math. $(2)$ 179:2 (2014), 683–782.
  • D. Mucci, “The homological singularities of maps in trace spaces between manifolds”, Math. Z. 266:4 (2010), 817–849.
  • S. Müller and V. Šverák, “On surfaces of finite total curvature”, J. Differential Geom. 42:2 (1995), 229–258.
  • M. Nicolesco, Les fonctions polyharmoniques, Actualités Scientifiques et Industrielles 331, Hermann, Paris, 1936. Exposés sur la théorie des fonctions, IV.
  • M. Petrache, Weak bundle structures and a variational approach to Yang–Mills Lagrangians in supercritical dimensions, thesis, Eidgenössische Technische Hochschule, Zürich, 2013, http://www.math.ethz.ch/~riviere/papers/petrache-thesis.pdf.
  • M. Petrache and T. Rivière, “Weak closure of weak $L^2$ curvatures in supercritical dimension”, preprint. In preparation.
  • T. Rivière, “Conservation laws for conformally invariant variational problems”, Invent. Math. 168:1 (2007), 1–22.
  • T. Rivière, “Conformally invariant variational problems”, preprint, 2012.
  • T. Runst and W. Sickel, Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, de Gruyter Series in Nonlinear Analysis and Applications 3, de Gruyter, Berlin, 1996.
  • R. Schoen and K. K. Uhlenbeck, “Approximation theorems for Sobolev mappings”, unpublished manuscript, $\sim$1980.
  • S. Serfaty and I. Tice, “Lorentz space estimates for the Ginzburg–Landau energy”, J. Funct. Anal. 254:3 (2008), 773–825.
  • L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana 3, Springer, Berlin, 2007.
  • C. H. Taubes, “Self-dual Yang–Mills connections on non-self-dual $4$-manifolds”, J. Differential Geom. 17:1 (1982), 139–170.
  • H. Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995.
  • K. K. Uhlenbeck, “Removable singularities in Yang–Mills fields”, Comm. Math. Phys. 83:1 (1982), 11–29.
  • K. K. Uhlenbeck, “Connections with $L\sp{p}$ bounds on curvature”, Comm. Math. Phys. 83:1 (1982), 31–42.
  • H. C. Wente, “An existence theorem for surfaces of constant mean curvature”, J. Math. Anal. Appl. 26 (1969), 318–344.
  • B. White, “Homotopy classes in Sobolev spaces and the existence of energy minimizing maps”, Acta Math. 160:1-2 (1988), 1–17.