Analysis & PDE

  • Anal. PDE
  • Volume 6, Number 6 (2013), 1327-1420.

Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one

David Chiron

Full-text: Open access

Abstract

We study the stability/instability of the subsonic traveling waves of the nonlinear Schrödinger equation in dimension one. Our aim is to propose several methods for showing instability (use of the Grillakis–Shatah–Strauss theory, proof of existence of an unstable eigenvalue via an Evans function) or stability. For the latter, we show how to construct in a systematic way a Liapounov functional for which the traveling wave is a local minimizer. These approaches allow us to give a complete stability/instability analysis in the energy space including the critical case of the kink solution. We also treat the case of a cusp in the energy-momentum diagram.

Article information

Source
Anal. PDE, Volume 6, Number 6 (2013), 1327-1420.

Dates
Received: 25 June 2012
Revised: 4 September 2012
Accepted: 28 February 2013
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1513731411

Digital Object Identifier
doi:10.2140/apde.2013.6.1327

Mathematical Reviews number (MathSciNet)
MR3148057

Zentralblatt MATH identifier
1284.35060

Subjects
Primary: 35B35: Stability 35J20: Variational methods for second-order elliptic equations 35Q40: PDEs in connection with quantum mechanics 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10] 35C07: Traveling wave solutions

Keywords
traveling wave nonlinear Schrödinger equation Gross–Pitaevskii equation stability Evans function Liapounov functional

Citation

Chiron, David. Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one. Anal. PDE 6 (2013), no. 6, 1327--1420. doi:10.2140/apde.2013.6.1327. https://projecteuclid.org/euclid.apde/1513731411


Export citation

References

  • M. Abid, C. Huepe, S. Metens, C. Nore, C. T. Pham, L. S. Tuckerman, and M. E. Brachet, “Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence”, Fluid Dynam. Res. 33:5-6 (2003), 509–544.
  • J. P. Albert, “Positivity properties and stability of solitary-wave solutions of model equations for long waves”, Comm. Partial Differential Equations 17:1-2 (1992), 1–22.
  • I. V. Barashenkov, “Stability criterion for dark solitons”, Phys. Rev. Lett. 77:7 (1996), 1193–1197.
  • I. V. Barashenkov and E. Panova, “Stability and evolution of the quiescent and travelling solitonic bubbles”, Physica D 69:1-2 (1993), 114–134.
  • S. Benzoni-Gavage, “Propagating phase boundaries and capillary fluids”, Lecture notes, Centro Internazionale per la Ricerca Matematica, 2010, http://www.science.unitn.it/cirm/Benzoni-course.pdf.
  • S. Benzoni-Gavage, “Spectral transverse instability of solitary waves in Korteweg fluids”, J. Math. Anal. Appl. 361:2 (2010), 338–357.
  • S. Benzoni-Gavage, R. Danchin, S. Descombes, and D. Jamet, “Structure of Korteweg models and stability of diffuse interfaces”, Interfaces Free Bound. 7:4 (2005), 371–414.
  • H. Berestycki and T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires”, C. R. Acad. Sci. Paris Sér. I Math. 293:9 (1981), 489–492.
  • F. Béthuel, P. Gravejat, and J.-C. Saut, “Existence and properties of travelling waves for the Gross–Pitaevskii equation”, pp. 55–103 in Stationary and time dependent Gross–Pitaevskii equations (Vienna, 2006), edited by A. Farina and J.-C. Saut, Contemp. Math. 473, Amer. Math. Soc., Providence, RI, 2008.
  • F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, “Orbital stability of the black soliton for the Gross–Pitaevskii equation”, Indiana Univ. Math. J. 57:6 (2008), 2611–2642.
  • F. Béthuel, R. Danchin, and D. Smets, “On the linear wave regime of the Gross–Pitaevskii equation”, J. Anal. Math. 110 (2010), 297–338.
  • M. Bogdan, A. Kovalev, and A. Kosevich, “Stability criterion in imperfect Bose gas”, Fiz. Nizk. Temp. 15:5 (1989), 511–513. In Russian.
  • J. L. Bona, P. E. Souganidis, and W. A. Strauss, “Stability and instability of solitary waves of Korteweg–de Vries type”, Proc. Roy. Soc. London Ser. A 411:1841 (1987), 395–412.
  • A. de Bouard, “Instability of stationary bubbles”, SIAM J. Math. Anal. 26:3 (1995), 566–582.
  • T. J. Bridges and G. Derks, “Linear instability of solitary wave solutions of the Kawahara equation and its generalizations”, SIAM J. Math. Anal. 33:6 (2002), 1356–1378.
  • T. Cazenave and P.-L. Lions, “Orbital stability of standing waves for some nonlinear Schrödinger equations”, Comm. Math. Phys. 85:4 (1982), 549–561.
  • D. Chiron, “Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one”, Nonlinearity 25:3 (2012), 813–850.
  • D. Chiron and C. Scheid, “Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension two”, preprint, 2012, http://math.unice.fr/~chiron/fichierspdf/Endim2.pdf.
  • A. Comech and D. Pelinovsky, “Purely nonlinear instability of standing waves with minimal energy”, Comm. Pure Appl. Math. 56:11 (2003), 1565–1607.
  • A. Comech, S. Cuccagna, and D. E. Pelinovsky, “Nonlinear instability of a critical traveling wave in the generalized Korteweg–de Vries equation”, SIAM J. Math. Anal. 39:1 (2007), 1–33.
  • L. Di Menza and C. Gallo, “The black solitons of one-dimensional NLS equations”, Nonlinearity 20:2 (2007), 461–496.
  • M. Fakau and M. I. Karval'u, “Stability of dark screening solitons in photorefractive media”, Teoret. Mat. Fiz. 160:1 (2009), 49–58. In Russian; translated in Theoret. and Math. Phys. 160:1 (2009), 917–924.
  • E. P. Fitrakis, P. G. Kevrekidis, H. Susanto, and D. J. Frantzeskakis, “Dark solitons in discrete lattices: saturable versus cubic nonlinearities”, Phys. Rev. E $(3)$ 75:6 (2007), 066608, 12.
  • C. Gallo, “Schrödinger group on Zhidkov spaces”, Adv. Differential Equations 9:5-6 (2004), 509–538. http://msp.org/idx/mr/2006d.35255MR 2006d.35255
  • C. Gallo, “The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity”, Comm. Partial Differential Equations 33:4-6 (2008), 729–771.
  • R. A. Gardner and K. Zumbrun, “The gap lemma and geometric criteria for instability of viscous shock profiles”, Comm. Pure Appl. Math. 51:7 (1998), 797–855.
  • L. Gearhart, “Spectral theory for contraction semigroups on Hilbert space”, Trans. Amer. Math. Soc. 236 (1978), 385–394.
  • V. Georgiev and M. Ohta, “Nonlinear instability of linearly unstable standing waves for nonlinear Schrödinger equations”, J. Math. Soc. Japan 64:2 (2012), 533–548.
  • P. Gérard, “The Gross–Pitaevskii equation in the energy space”, pp. 129–148 in Stationary and time dependent Gross–Pitaevskii equations (Vienna, 2006), edited by A. Farina and J.-C. Saut, Contemp. Math. 473, Amer. Math. Soc., Providence, RI, 2008.
  • P. Gérard and Z. Zhang, “Orbital stability of traveling waves for the one-dimensional Gross–Pitaevskii equation”, J. Math. Pures Appl. $(9)$ 91:2 (2009), 178–210.
  • F. Gesztesy, C. K. R. T. Jones, Y. Latushkin, and M. Stanislavova, “A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations”, Indiana Univ. Math. J. 49:1 (2000), 221–243.
  • V. L. Ginzburg and L. P. Pitaevskiĭ, “On the theory of superfluidity”, Soviet Physics. JETP 7:5 (1958), 858–861.
  • E. Grenier, “On the nonlinear instability of Euler and Prandtl equations”, Comm. Pure Appl. Math. 53:9 (2000), 1067–1091.
  • M. Grillakis, “Linearized instability for nonlinear Schrödinger and Klein–Gordon equations”, Comm. Pure Appl. Math. 41:6 (1988), 747–774.
  • M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry, I”, J. Funct. Anal. 74:1 (1987), 160–197.
  • M. Grillakis, J. Shatah, and W. Strauss, “Stability theory of solitary waves in the presence of symmetry, II”, J. Funct. Anal. 94:2 (1990), 308–348.
  • E. P. Gross, “Hydrodynamics of a superfluid condensate”, J. Math. Phys. 4:2 (1963), 195–207.
  • D. B. Henry, J. F. Perez, and W. F. Wreszinski, “Stability theory for solitary-wave solutions of scalar field equations”, Comm. Math. Phys. 85:3 (1982), 351–361.
  • P. D. Hislop and I. M. Sigal, Introduction to spectral theory, with applications to Schr ödinger operators, Applied Mathematical Sciences 113, Springer, New York, 1996.
  • T. Kapitula and B. Sandstede, “Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations”, Phys. D 124:1-3 (1998), 58–103.
  • T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften 132, Springer, Berlin, 1976.
  • Y. S. Kivshar and W. Krolikowski, “Instabilities of dark solitons”, Optics Letters 20:14 (1995), 1527–1529.
  • Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications”, Physics Reports 298:2-3 (1998), 81–197.
  • Y. S. Kivshar and X. Yang, “Perturbation-induced dynamics of dark solitons”, Phys. Rev. E $(3)$ 49:2 (1994), 1657–1670.
  • E. B. Kolomeisky, T. J. Newman, J. P. Straley, and X. Qi, “Low-dimensional Bose liquids: beyond the Gross–Pitaevskii approximation”, Phys. Rev. Lett. 85:8 (2000), 1146–1149.
  • Z. Lin, “Stability and instability of traveling solitonic bubbles”, Adv. Differential Equations 7:8 (2002), 897–918.
  • Z. Lin, “Instability of nonlinear dispersive solitary waves”, J. Funct. Anal. 255:5 (2008), 1191–1224. http://msp.org/idx/mr/2010m.35456MR 2010m.35456
  • O. Lopes, “A linearized instability result for solitary waves”, Discrete Contin. Dyn. Syst. 8:1 (2002), 115–119.
  • M. Maeda, “Stability of bound states of Hamiltonian PDEs in the degenerate cases”, J. Funct. Anal. 263:2 (2012), 511–528.
  • T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis, and J. Cuevas, “Travelling solitary waves in the discrete Schrödinger equation with saturable nonlinearity: existence, stability and dynamics”, Phys. D 237:4 (2008), 551–567.
  • T. Mizumachi, “A remark on linearly unstable standing wave solutions to NLS”, Nonlinear Anal. 64:4 (2006), 657–676.
  • M. Ohta, “Instability of bound states for abstract nonlinear Schrödinger equations”, J. Funct. Anal. 261:1 (2011), 90–110.
  • N. Papanicolaou and P. N. Spathis, “Semitopological solitons in planar ferromagnets”, Nonlinearity 12:2 (1999), 285–302.
  • R. L. Pego and M. I. Weinstein, “Eigenvalues, and instabilities of solitary waves”, Philos. Trans. Roy. Soc. London Ser. A 340:1656 (1992), 47–94.
  • D. E. Pelinovsky and P. G. Kevrekidis, “Dark solitons in external potentials”, Z. Angew. Math. Phys. 59:4 (2008), 559–599.
  • J. Prüss, “On the spectrum of $C\sb{0}$-semigroups”, Trans. Amer. Math. Soc. 284:2 (1984), 847–857.
  • P. Roberts and N. Berloff, “The nonlinear Schrödinger equation as a model of superfluid helium”, pp. 235–257 in Quantized vortex dynamics and superfluid turbulence, edited by C. F. Barenghi et al., Lecture Notes in Physics 571, Springer, Berlin, 2001.
  • F. Rousset and N. Tzvetkov, “Transverse nonlinear instability of solitary waves for some Hamiltonian PDE's”, J. Math. Pures Appl. $(9)$ 90:6 (2008), 550–590.
  • F. Rousset and N. Tzvetkov, “Transverse nonlinear instability for two-dimensional dispersive models”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26:2 (2009), 477–496.
  • B. Sandstede, “Stability of travelling waves”, pp. 983–1055 in Handbook of dynamical systems, II, edited by B. Fiedler, North-Holland, Amsterdam, 2002.
  • J. Shatah and W. Strauss, “Instability of nonlinear bound states”, Comm. Math. Phys. 100:2 (1985), 173–190.
  • J. Shatah and W. Strauss, “Spectral condition for instability”, pp. 189–198 in Nonlinear PDE's, dynamics and continuum physics (South Hadley, MA, 1998), edited by J. Bona et al., Contemp. Math. 255, Amer. Math. Soc., Providence, RI, 2000.
  • P. E. Souganidis and W. A. Strauss, “Instability of a class of dispersive solitary waves”, Proc. Roy. Soc. Edinburgh Sect. A 114:3-4 (1990), 195–212.
  • T. Tsuzuki, “Nonlinear waves in the Pitaevskii–Gross equation”, J. Low Temp. Phys. 4:4 (1971), 441–457.
  • M. I. Weinstein, “Lyapunov stability of ground states of nonlinear dispersive evolution equations”, Comm. Pure Appl. Math. 39:1 (1986), 51–67.
  • P. E. Zhidkov, Korteweg–de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Mathematics 1756, Springer, Berlin, 2001.
  • K. Zumbrun, “A sharp stability criterion for soliton-type propagating phase boundaries in Korteweg's model”, Z. Anal. Anwend. 27:1 (2008), 11–30.