Analysis & PDE
- Anal. PDE
- Volume 9, Number 4 (2016), 893-906.
Mean ergodic theorem for amenable discrete quantum groups and a Wiener-type theorem for compact metrizable groups
Abstract
We prove a mean ergodic theorem for amenable discrete quantum groups. As an application, we prove a Wiener-type theorem for continuous measures on compact metrizable groups.
Article information
Source
Anal. PDE, Volume 9, Number 4 (2016), 893-906.
Dates
Received: 10 November 2015
Revised: 3 February 2016
Accepted: 11 March 2016
First available in Project Euclid: 16 November 2017
Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843302
Digital Object Identifier
doi:10.2140/apde.2016.9.893
Mathematical Reviews number (MathSciNet)
MR3530196
Zentralblatt MATH identifier
1353.37009
Subjects
Primary: 37A30: Ergodic theorems, spectral theory, Markov operators {For operator ergodic theory, see mainly 47A35} 43A05: Measures on groups and semigroups, etc. 46L65: Quantizations, deformations
Keywords
mean ergodic theorem coamenable compact quantum group amenable discrete quantum group continuous measure
Citation
Huang, Huichi. Mean ergodic theorem for amenable discrete quantum groups and a Wiener-type theorem for compact metrizable groups. Anal. PDE 9 (2016), no. 4, 893--906. doi:10.2140/apde.2016.9.893. https://projecteuclid.org/euclid.apde/1510843302