Analysis & PDE

  • Anal. PDE
  • Volume 9, Number 3 (2016), 545-574.

Dispersive estimates for the Schrödinger operator on step-2 stratified Lie groups

Hajer Bahouri, Clotilde Fermanian-Kammerer, and Isabelle Gallagher

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The present paper is dedicated to the proof of dispersive estimates on stratified Lie groups of step 2 for the linear Schrödinger equation involving a sublaplacian. It turns out that the propagator behaves like a wave operator on a space of the same dimension p as the center of the group, and like a Schrödinger operator on a space of the same dimension k as the radical of the canonical skew-symmetric form, which suggests a decay rate |t|(k+p1)2. We identify a property of the canonical skew-symmetric form under which we establish optimal dispersive estimates with this rate. The relevance of this property is discussed through several examples.

Article information

Anal. PDE, Volume 9, Number 3 (2016), 545-574.

Received: 22 March 2014
Revised: 24 November 2015
Accepted: 30 January 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35B40: Asymptotic behavior of solutions

step-2 stratified Lie groups Schrödinger equation dispersive estimates sublaplacian


Bahouri, Hajer; Fermanian-Kammerer, Clotilde; Gallagher, Isabelle. Dispersive estimates for the Schrödinger operator on step-2 stratified Lie groups. Anal. PDE 9 (2016), no. 3, 545--574. doi:10.2140/apde.2016.9.545.

Export citation


  • J.-P. Anker and V. Pierfelice, “Nonlinear Schrödinger equation on real hyperbolic spaces”, Ann. Inst. H. Poincaré Anal. Non Linéaire 26:5 (2009), 1853–1869.
  • R. Anton, “Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains”, Bull. Soc. Math. France 136:1 (2008), 27–65.
  • H. Bahouri and J.-Y. Chemin, “Équations d'ondes quasilinéaires et estimations de Strichartz”, Amer. J. Math. 121:6 (1999), 1337–1377.
  • H. Bahouri and J.-Y. Chemin, “Microlocal analysis, bilinear estimates and cubic quasilinear wave equation”, pp. 93–141 in Autour de l'analyse microlocale, edited by G. Lebeau, Astérisque 284, Société Mathématique de France, Paris, 2003.
  • H. Bahouri and I. Gallagher, “Paraproduit sur le groupe de Heisenberg et applications”, Rev. Mat. Iberoamericana 17:1 (2001), 69–105.
  • H. Bahouri, P. Gérard, and C.-J. Xu, “Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg”, J. Anal. Math. 82 (2000), 93–118.
  • H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Math. Wissenschaften 343, Springer, Heidelberg, 2011.
  • H. Bahouri, C. Fermanian-Kammerer, and I. Gallagher, Phase-space analysis and pseudodifferential calculus on the Heisenberg group, Astérisque 342, Société Mathématique de France, Paris, 2012.
  • H. Bahouri, C. Fermanian-Kammerer, and I. Gallagher, “Refined inequalities on graded Lie groups”, C. R. Math. Acad. Sci. Paris 350:7–8 (2012), 393–397.
  • V. Banica, “The nonlinear Schrödinger equation on hyperbolic space”, Comm. Partial Differential Equations 32:10–12 (2007), 1643–1677.
  • V. Banica and T. Duyckaerts, “Weighted Strichartz estimates for radial Schrödinger equation on noncompact manifolds”, Dyn. Partial Differ. Equ. 4:4 (2007), 335–359.
  • P. Brenner, “On $L\sb{p}$–$L\sb{p\sp{\prime} }$ estimates for the wave-equation”, Math. Z. 145:3 (1975), 251–254.
  • N. Burq, P. Gérard, and N. Tzvetkov, “Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds”, Amer. J. Math. 126:3 (2004), 569–605.
  • N. Burq, G. Lebeau, and F. Planchon, “Global existence for energy critical waves in $3$-D domains”, J. Amer. Math. Soc. 21:3 (2008), 831–845.
  • P. Ciatti, F. Ricci, and M. Sundari, “Uncertainty inequalities on stratified nilpotent groups”, Bull. Kerala Math. Assoc. Special Issue (2005), 53–72.
  • L. J. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications, I: Basic theory and examples, Cambridge Studies in Advanced Mathematics 18, Cambridge University Press, 1990.
  • M. Del Hierro, “Dispersive and Strichartz estimates on H-type groups”, Studia Math. 169:1 (2005), 1–20.
  • G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies 122, Princeton University Press, 1989.
  • G. B. Folland and E. M. Stein, Hardy spaces on homogeneous groups, Mathematical Notes 28, Princeton University Press, 1982.
  • G. Furioli, C. Melzi, and A. Veneruso, “Strichartz inequalities for the wave equation with the full Laplacian on the Heisenberg group”, Canad. J. Math. 59:6 (2007), 1301–1322.
  • J. Ginibre and G. Velo, “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal. 133:1 (1995), 50–68.
  • O. Ivanovici, G. Lebeau, and F. Planchon, “Dispersion for the wave equation inside strictly convex domains I: The Friedlander model case”, Ann. of Math. $(2)$ 180:1 (2014), 323–380.
  • L. V. Kapitanski, “\cyr Nekotorye obobshcheniya neravenstva Strikhartsa–Brennera”, Alg. Anal. 1:3 (1989), 127–159. Translated as “Some generalizations of the Strichartz–Brenner inequality” in Leningrad Math. J. 1:3 (1990), 693–726.
  • M. Keel and T. Tao, “Endpoint Strichartz estimates”, Amer. J. Math. 120:5 (1998), 955–980.
  • S. Klainerman and I. Rodnianski, “Rough solutions of the Einstein-vacuum equations”, Ann. of Math. $(2)$ 161:3 (2005), 1143–1193.
  • A. Korányi, “Geometric properties of Heisenberg-type groups”, Adv. Math. 56:1 (1985), 28–38.
  • J. Ludwig, “Dual topology of diamond groups”, J. Reine Angew. Math. 467 (1995), 67–87.
  • C. C. Moore and J. A. Wolf, “Square integrable representations of nilpotent groups”, Trans. Amer. Math. Soc. 185 (1973), 445–462.
  • D. Müller and F. Ricci, “Solvability for a class of doubly characteristic differential operators on $2$-step nilpotent groups”, Ann. of Math. $(2)$ 143:1 (1996), 1–49.
  • H. Pecher, “$L\sp{p}$-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen, I”, Math. Z. 150:2 (1976), 159–183.
  • D. Poguntke, “Unitary representations of diamond groups”, Math. Scand. 85:1 (1999), 121–160.
  • I. E. Segal, “Space-time decay for solutions of wave equations”, Adv. Math. 22:3 (1976), 305–311.
  • H. F. Smith, “A parametrix construction for wave equations with $C\sp {1,1}$ coefficients”, Ann. Inst. Fourier $($Grenoble$)$ 48:3 (1998), 797–835.
  • H. F. Smith and C. D. Sogge, “On the critical semilinear wave equation outside convex obstacles”, J. Amer. Math. Soc. 8:4 (1995), 879–916.
  • H. F. Smith and D. Tataru, “Sharp local well-posedness results for the nonlinear wave equation”, Ann. of Math. $(2)$ 162:1 (2005), 291–366.
  • E. M. Stein, “Oscillatory integrals in Fourier analysis”, pp. 307–355 in Beijing lectures in harmonic analysis (Beijing, 1984), edited by E. M. Stein, Annals of Mathematics Studies 112, Princeton University Press, 1986.
  • E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43, Princeton University Press, 1993.
  • E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series 32, Princeton University Press, 1971.
  • R. S. Strichartz, “Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations”, Duke Math. J. 44:3 (1977), 705–714.
  • T. Tao, Nonlinear dispersive equations: local and global analysis, CBMS Regional Conference Series in Mathematics 106, American Mathematical Society, Providence, RI, 2006.
  • D. Tataru, “Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation”, Trans. Amer. Math. Soc. 353:2 (2001), 795–807.