Analysis & PDE

  • Anal. PDE
  • Volume 9, Number 2 (2016), 439-458.

A counterexample to the Hopf–Oleinik lemma (elliptic case)

Darya E. Apushkinskaya and Alexander I. Nazarov

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/apde.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We construct a new counterexample to the Hopf–Oleinik boundary point lemma. It shows that for convex domains, the C1,Dini assumption on Ω is the necessary and sufficient condition providing the estimates of Hopf–Oleinik type.

Article information

Source
Anal. PDE, Volume 9, Number 2 (2016), 439-458.

Dates
Received: 2 April 2015
Revised: 29 September 2015
Accepted: 16 December 2015
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.apde/1510843242

Digital Object Identifier
doi:10.2140/apde.2016.9.439

Mathematical Reviews number (MathSciNet)
MR3513140

Zentralblatt MATH identifier
1354.35024

Subjects
Primary: 35J15: Second-order elliptic equations 35B45: A priori estimates

Keywords
elliptic equations Hopf–Oleinik lemma Dini continuity counterexample

Citation

Apushkinskaya, Darya E.; Nazarov, Alexander I. A counterexample to the Hopf–Oleinik lemma (elliptic case). Anal. PDE 9 (2016), no. 2, 439--458. doi:10.2140/apde.2016.9.439. https://projecteuclid.org/euclid.apde/1510843242


Export citation

References

  • A. D. Aleksandrov, “Certain estimates for the Dirichlet problem”, Dokl. Akad. Nauk SSSR 134 (1960), 1001–1004. In Russian; translated in Soviet Math. Dokl. 1 (1961), 1151–1154.
  • A. D. Aleksandrov, “Uniqueness conditions and bounds for the solution of the Dirichlet problem”, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18:3 (1963), 5–29. In Russian.
  • R. Alvarado, Topics in harmonic analysis and partial differential equations: extension theorems and geometric maximum principles, master's thesis, University of Missouri, 2011, http://tinyurl.com/hzgwt8t.
  • R. Alvarado, D. Brigham, V. Maz'ya, M. Mitrea, and E. Ziadé, “On the regularity of domains satisfying a uniform hour-glass condition and a sharp version of the Hopf–Oleinik boundary point principle”, Problem. Mat. Anal. 57 (2011), 3–68. In Russian; translated in J. Math. Sci. New York 176:3 (2011), 281–360.
  • D. E. Apushkinskaya and A. I. Nazarov, “The Dirichlet problem for quasilinear elliptic equations in domains with smooth closed edges”, Problem. Mat. Anal. 21 (2000), 3–29. In Russian; translated in J. Math. Sci. New York 105:5 (2001), 2299–2318.
  • D. E. Apushkinskaya and N. N. Ural'tseva, “On the behavior of the free boundary near the boundary of the domain”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. $($POMI$)$ 221 (1995), 5–19, 253. In Russian; translated in J. Math. Sci. (New York) 87:2 (1997), 3267–3276.
  • I. J. Bakel'man, “On the theory of quasilinear elliptic equations”, Sibirsk. Mat. Ž. 2 (1961), 179–186. In Russian.
  • J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics 29, American Mathematical Society, Providence, RI, 2001.
  • G. Giraud, “Generalisation des problèmes sur les operations du type elliptique”, Bull. Sci, Math. $(2)$ 56 (1932), 316–352.
  • G. Giraud, “Problèmes de valeurs à la frontière relatifs à certaines données discontinues”, Bull. Soc. Math. France 61 (1933), 1–54.
  • B. N. Himčenko, “On the behavior of solutions of elliptic equations near the boundary of a domain of type $A\sp{(1)}$”, Dokl. Akad. Nauk SSSR 193 (1970), 304–305. In Russian; translated in Soviet Math. Dokl. 11 (1970), 943–944.
  • E. Hopf, “A remark on linear elliptic differential equations of second order”, Proc. Amer. Math. Soc. 3 (1952), 791–793.
  • F. John and L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math. 14 (1961), 415–426.
  • L. I. Kamynin and B. N. Himčenko, “Theorems of Giraud type for a second order elliptic operator that is weakly degenerate near the boundary”, Dokl. Akad. Nauk SSSR 224:4 (1975), 752–755. In Russian; translated in Soviet Math. Dokl. 16:5 (1975), 1287–1291.
  • L. I. Kamynin and B. N. Himčenko, “Theorems of Giraud type for second order equations with a weakly degenerate non-negative characteristic part”, Sibirsk. Mat. Ž. 18:1 (1977), 103–121, 238. In Russian; translated in Sib. Math. J. 18 (1977), 76–91.
  • L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982.
  • M. V. Keldysh and M. A. Lavrent'ev, “On the uniqueness of the Neumann problem”, Dokl. Akad. Nauk SSSR 16:3 (1937), 151–152. In Russian.
  • A. Korn, Lehrbuch der Potentialtheorie, II: Allgemeine Theorie des Logarithmischen Potentials und der Potentialfunctionen in der Ebene, F. Dümmler, Berlin, 1901.
  • N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, Graduate Studies in Mathematics 96, American Mathematical Society, Providence, RI, 2008.
  • O. A. Ladyzhenskaya and N. N. Ural'tseva, “Estimates of the Hölder constant for functions satisfying a uniformly elliptic or uniformly parabolic quasilinear inequality with unbounded coefficients”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. $($LOMI$)$ 147 (1985), 72–94, 204. In Russian; translated in J. Soviet Math. 37:1 (1987), 837–851.
  • O. A. Ladyzhenskaya and N. N. Ural'tseva, “Estimates on the boundary of the domain of first derivatives of functions satisfying an elliptic or a parabolic inequality”, Trudy Mat. Inst. Steklov. 179 (1988), 102–125, 243. In Russian; translated in Proc. Steklov Inst. Math. 179, (1989), 109–135.
  • L. Lichtenstein, “Neue Beiträge zur Theorie der linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus”, Math. Z. 20:1 (1924), 194–212.
  • G. M. Lieberman, “Regularized distance and its applications”, Pacific J. Math. 117:2 (1985), 329–352.
  • H. Mikayelyan and H. Shahgholian, “Hopf's lemma for a class of singular/degenerate PDEs”, Ann. Acad. Sci. Fenn. Math. 40:1 (2015), 475–484.
  • N. S. Nadirashvili, “On the question of the uniqueness of the solution of the second boundary value problem for second-order elliptic equations”, Mat. Sb. $($N.S.$)$ 122(164):3 (1983), 341–359. In Russian; translated in Math. USSR-Sb. 50:2 (1985), 325–341.
  • A. I. Nazarov, “Estimates for the maximum of solutions of elliptic and parabolic equations in terms of weighted norms of the right-hand side”, Algebra i Analiz 13:2 (2001), 151–164. In Russian; translated in St. Petersburg Math. J. 13:2 (2002), 269–279.
  • A. I. Nazarov, “The maximum principle of A. D. Aleksandrov”, Sovrem. Mat. Prilozh. 29 (2005), 129–145. In Russian; translated in J. Math. Sci. New York 142:3 (2007), 2154–2171.
  • A. I. Nazarov, “A centennial of the Zaremba–Hopf–Oleinik lemma”, SIAM J. Math. Anal. 44:1 (2012), 437–453.
  • A. I. Nazarov and N. N. Uraltseva, “Qualitative properties of solutions to elliptic and parabolic equations with unbounded lower-order coefficients”, preprint, 2009, http://www.mathsoc.spb.ru/preprint/2009/09-05.ps.gz.
  • C. Neumann, “Ueber die Methode des arithmetischen Mittels, zweite Abhandlung”, Leipz. Abh. 14 (1888), 565–726.
  • O. A. Oleĭnik, “On properties of solutions of certain boundary problems for equations of elliptic type”, Mat. Sbornik N.S. 30(72):3 (1952), 695–702. In Russian.
  • M. V. Safonov, “Boundary estimates for positive solutions to second order elliptic equations”, preprint, 2008.
  • M. V. Safonov, “Non-divergence elliptic equations of second order with unbounded drift”, pp. 211–232 in Nonlinear partial differential equations and related topics, edited by A. A. Arkhipova and A. I. Nazarov, Amer. Math. Soc. Transl. Ser. 2 229, Amer. Math. Soc., Providence, RI, 2010.
  • G. Sweers, “Hopf's lemma and two-dimensional domains with corners”, Rend. Istit. Mat. Univ. Trieste 28:suppl. (1997), 383–419.
  • P. Tolksdorf, “On the Dirichlet problem for quasilinear equations in domains with conical boundary points”, Comm. Partial Differential Equations 8:7 (1983), 773–817.
  • N. N. Ural'tseva, “$C\sp 1$ regularity of the boundary of a noncoincident set in a problem with an obstacle”, Algebra i Analiz 8:2 (1996), 205–221. In Russian; translated in St. Petersburg Math. J. 8:2 (1997), 241–253.
  • K.-O. Widman, “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand. 21 (1967), 17–37.
  • S. Zaremba, “Sur un problème mixte relatif à l' équation de Laplace”, Krakau Anz. (A) (1910), 313–344.