Advances in Operator Theory

On behavior of Fourier coefficients and uniform convergence of Fourier series in the Haar system

M. G. ‎Grigoryan‎ and A. Kh. ‎Kobelyan

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


‎Suppose that $\hat{b}_m\downarrow 0,\ \{\hat{b}_m\}_{m=1}^\infty\notin l^2,$‎ ‎and $b_n=2^{-\frac{m}{2}}\hat{b}_m$ for all $ n\in(2^m,2^{m+1}].$‎ ‎In this paper‎, ‎it is proved that any measurable and almost everywhere finite‎ ‎function $f(x)$ on $[0,1]$ can be corrected on a set of arbitrarily small measure‎ ‎to a bounded measurable function $\widetilde{f}(x)$; so that the nonzero Fourier-Haar‎ ‎coefficients of the corrected function present some subsequence of $\{b_n\}$‎, ‎and its‎ ‎Fourier-Haar series converges uniformly on $[0,1]$‎.

Article information

Adv. Oper. Theory, Volume 3, Number 4 (2018), 781-793.

Received: 21 January 2018
Accepted: 12 May 2018
First available in Project Euclid: 8 June 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 42A65: Completeness of sets of functions
Secondary: 42A20‎ ‎43A50

Haar system ‎Fourier-Haar coefficients ‎Uniform convergence


‎Grigoryan‎, M. G.; ‎Kobelyan, A. Kh. On behavior of Fourier coefficients and uniform convergence of Fourier series in the Haar system. Adv. Oper. Theory 3 (2018), no. 4, 781--793. doi:10.15352/aot.1801-1300.

Export citation


  • F. G. Arutyunyan, On series in the Haar system, ANA SSR Dokl. 42 (1966), no.3, 134–140.
  • R. A. DeVore, V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput. Math. 5 (1966) no. 2-3, 173–187.
  • S. A. Episkoposyan, On the existence of universal series by the generalized Walsh system , Banach J. Math. Anal. 10 (2016), no. 2, 415–429.
  • M. G. Grigorian, On the convergence of Fourier series in the metric of $L^{1}$, Anal. Math. 17 (1991), 211–237.
  • M. G. Grigoryan, On the universal and strong ($L^1$,$L^{\infty }$)-property related to Fourier–Walsh series, Banach J. Math. Anal. 11 (2017), no. 3, 698–712.
  • M. G. Grigoryan, V. G. Krotov, Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber-Schauder System, Math. Notes 93 (2013), no. 2, 11–17.
  • A. Haar, Zur Theorie der orthogonalen Funktionensysteme , Math. Ann. 69 (1910), no. 3, 331–371.
  • N. N. Luzin, On the basic theorem of integral calculus, Mat. Sbornik 28 (1912), 266–294.
  • J. Marcinkiewicz, Quelques théoremes sur les séries orthogonales, Ann. Soc. Polon. Math., 16 (1937), 84–96 (pp. 307–318 of the Collected Papers).
  • D. E. Menchoff, Sur la convergence uniforme des séries de Fourier , Mat. Sbornik 53 (1942), no. 1-2, 67–96.(French)
  • K. A. Navasardyan, A. A. Stepanyan, Series by Haar system, Izv. Nats. Akad. Nauk Armenii mat. 42 (2007), no. 4, 53–66.
  • A. M. Olevskii, Modification of functions and Fourier series, Uspekhi Mat. Nauk, 40 (1985), no. 3(243), 157–193.
  • K. I. Oskolkov, The uniform modulus of continuity of integrable functions on sets of positive measure, Dokl. Akad. Nauk SSSR 229 (1976), 304–306.
  • J. J. Price, Walsh series and adjustment of functions on small sets, Illinois J. Math. 13 (1969), no. 1,131–136.