Advances in Operator Theory

On the weak compactness of Weak* Dunford-Pettis operators on Banach lattices

El Fahri Kamal, H'michane Jawad, El Kaddouri Abdelmonim, and Aboutafail Moulay Othmane

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We characterize Banach lattices on which each positive weak* Dunford-Pettis operator is weakly (resp., M-weakly, resp., order weakly) compact. More precisely, we prove that if $F$ is a Banach lattice with order continuous norm, then each positive weak* Dunford-Pettis operator $T : E \longrightarrow F$ is weakly compact if, and only if, the norm of $E^{\prime}$ is order continuous or $F$ is reflexive. On the other hand, when the Banach lattice $F$ is Dedekind $\sigma$-complete, we show that every positive weak* Dunford-Pettis operator $T: E \longrightarrow F$ is M-weakly compact if, and only if, the norms of $E^{\prime}$ and $F$ are order continuous or $E$ is finite-dimensional.

Article information

Source
Adv. Oper. Theory, Volume 2, Number 3 (2017), 192-200.

Dates
Received: 12 December 2016
Accepted: 17 March 2017
First available in Project Euclid: 4 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.aot/1512431670

Digital Object Identifier
doi:10.22034/aot.1612-1078

Mathematical Reviews number (MathSciNet)
MR3730048

Zentralblatt MATH identifier
1380.46012

Subjects
Primary: 46B42: Banach lattices [See also 46A40, 46B40]
Secondary: 47B60: Operators on ordered spaces 47B65: Positive operators and order-bounded operators

Keywords
weak* Dunford–Pettis operator weakly compact operator M-weakly compact operator order weakly compact operator DP* property

Citation

Kamal, El Fahri; Jawad, H'michane; Abdelmonim, El Kaddouri; Moulay Othmane, Aboutafail. On the weak compactness of Weak* Dunford-Pettis operators on Banach lattices. Adv. Oper. Theory 2 (2017), no. 3, 192--200. doi:10.22034/aot.1612-1078. https://projecteuclid.org/euclid.aot/1512431670


Export citation

References

  • C. D. Aliprantis and O. Burkinshaw, Positive operators, Reprint of the 1985 original, Springer, Dordrecht, 2006.
  • B. Aqzzouz, R. Nouira, and L. Zraoula, Sur les opérateurs de Dunford-Pettis positifs qui sont faiblement compacts, (French) [On weakly compact positive Dunford-Pettis operators], Proc. Amer. Math. Soc. 134 (2006), 1161–1165.
  • B. Aqzzouz, A. Elbour, and J. H'michane. On some properties of the class of semi-compact operators, Bull. Belg. Math. Soc. Simon Stevin 18 (2011), no. 4, 761–767.
  • J. Borwein, M. Fabian, and J. Vanderwerff, Characterizations of Banach spaces via convex and other locally Lipschitz functions, Acta Math. Vietnam, 22 (1997), 53–69.
  • N. Cheng, Z. L. Chen, and Y. Feng, L and M-weak compactness of positive semi-compact operators, Rend. Circ. Mat. Palermo 59 (2010), 101–105.
  • J. X. Chen, Z. L. Chen, and G. X. Ji, Domination by positive weak* Dunford–Pettis operator on Banach lattices, Bull. Aust. Math. Soc. 90 (2014), 311–318.
  • J. Diestel, Sequences and series in Banach spaces, Vol. 92 of Graduate Texts in Mathematics, Springer, Berlin, Germany, 1984.
  • P. G. Dodds and D. H. Fremlin, Compact operators on Banach lattices, Israel J. Math. 34 (1979), 287–320.
  • A. El Kaddouri, J. H'michane, K. Bouras, and M. Moussa, On the class of weak* Dunford–Pettis operators, Rend. Circ. Mat. Palermo (2) 62 (2013), 261–265.
  • P. Meyer-Nieberg, Banach lattices, Universitext. Springer-Verlag, Berlin, 1991.
  • H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974.
  • A. W. Wickstead, Converses for the Dodds-Fremlin and Kalton-Saab theorems, Math. Proc. Cambidge Philos. Soc. 120 (1996), 175–179.