The Annals of Statistics

Peter Hall’s main contributions to deconvolution

Aurore Delaigle

Full-text: Open access

Abstract

Peter Hall died in Melbourne on January 9, 2016. He was an extremely prolific researcher and contributed to many different areas of statistics. In this paper, I talk about my experience with Peter and I summarise his main contributions to deconvolution, which include measurement error problems and problems in image analysis.

Article information

Source
Ann. Statist., Volume 44, Number 5 (2016), 1854-1866.

Dates
Received: June 2016
First available in Project Euclid: 12 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.aos/1473685260

Digital Object Identifier
doi:10.1214/16-AOS1491

Mathematical Reviews number (MathSciNet)
MR3546435

Zentralblatt MATH identifier
1349.62009

Subjects
Primary: 62G07: Density estimation 62G08: Nonparametric regression 62G20: Asymptotic properties

Keywords
Berkson errors errors-in-variables image analysis measurement errors nonparametric smoothing

Citation

Delaigle, Aurore. Peter Hall’s main contributions to deconvolution. Ann. Statist. 44 (2016), no. 5, 1854--1866. doi:10.1214/16-AOS1491. https://projecteuclid.org/euclid.aos/1473685260


Export citation

References

  • Butucea, C. and Matias, C. (2005). Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli 11 309–340.
  • Butucea, C., Matias, C. and Pouet, C. (2008). Adaptivity in convolution models with partially known noise distribution. Electron. J. Stat. 2 897–915.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2007). Non-parametric regression estimation from data contaminated by a mixture of Berkson and classical errors. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 859–878.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2009). Nonparametric prediction in measurement error models. J. Amer. Statist. Assoc. 104 993–1003.
  • Carroll, R. J., Delaigle, A. and Hall, P. (2011). Testing and estimating shape-constrained nonparametric density and regression in the presence of measurement error. J. Amer. Statist. Assoc. 106 191–202.
  • Carroll, R., Delaigle, A. and Hall, P. (2012). Deconvolution when classifying noisy data involving transformations. J. Amer. Statist. Assoc. 107 1166–1177.
  • Carroll, R. J. and Hall, P. (1988). Optimal rates of convergence for deconvolving a density. J. Amer. Statist. Assoc. 83 1184–1186.
  • Carroll, R. J. and Hall, P. (2004). Low order approximations in deconvolution and regression with errors in variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 31–46.
  • Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed. Monographs on Statistics and Applied Probability 105. Chapman & Hall/CRC, Boca Raton, FL.
  • Chen, S. X., Delaigle, A. and Hall, P. (2010). Nonparametric estimation for a class of Lévy processes. J. Econometrics 157 257–271.
  • Cheng, M. Y. and Fan, J. (2016). Peter Hall’s contributions to nonparametric function estimation and modeling. Ann. Statist. 44 1837–1853.
  • Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models. J. Amer. Statist. Assoc. 89 1314–1328.
  • Delaigle, A. (2008). An alternative view of the deconvolution problem. Statist. Sinica 18 1025–1045.
  • Delaigle, A. and Hall, P. (2006). On optimal kernel choice for deconvolution. Statist. Probab. Lett. 76 1594–1602.
  • Delaigle, A. and Hall, P. (2008). Using SIMEX for smoothing-parameter choice in errors-in-variables problems. J. Amer. Statist. Assoc. 103 280–287.
  • Delaigle, A. and Hall, P. (2011). Estimation of observation-error variance in errors-in-variables regression. Statist. Sinica 21 1023–1063.
  • Delaigle, A. and Hall, P. (2016). Methodology for non-parametric deconvolution when the error distribution is unknown. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 231–252.
  • Delaigle, A., Hall, P. and Jamshidi, F. (2015). Confidence bands in non-parametric errors-in-variables regression. J. R. Stat. Soc. Ser. B. Stat. Methodol. 77 149–169.
  • Delaigle, A., Hall, P. and Meister, A. (2008). On deconvolution with repeated measurements. Ann. Statist. 36 665–685.
  • Delaigle, A., Hall, P. and Müller, H.-G. (2007). Accelerated convergence for nonparametric regression with coarsened predictors. Ann. Statist. 35 2639–2653.
  • Delaigle, A., Hall, P. and Qiu, P. (2006). Nonparametric methods for solving the Berkson errors-in-variables problem. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 201–220.
  • Delaigle, A. and Wand, M. P. (2016). A conversation with Peter Hall. Statist. Sci. 31 275–304.
  • Diggle, P. J. and Hall, P. (1993). A Fourier approach to nonparametric deconvolution of a density estimate. J. Roy. Statist. Soc. Ser. B 55 523–531.
  • Fan, J. (1991). On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 1257–1272.
  • Fan, J. and Truong, Y. K. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900–1925.
  • Hall, P. (1987a). On the amount of detail that can be recovered from a degraded signal. Adv. in Appl. Probab. 19 371–395.
  • Hall, P. (1987b). On the processing of a motion-blurred image. SIAM J. Appl. Math. 47 441–453.
  • Hall, P. (1990). Optimal convergence rates in signal recovery. Ann. Probab. 18 887–900.
  • Hall, P. and Koch, I. (1990). On continuous image models and image analysis in the presence of correlated noise. Adv. in Appl. Probab. 22 332–349.
  • Hall, P. and Koch, I. (1992). On the feasibility of cross-validation in image analysis. SIAM J. Appl. Math. 52 292–313.
  • Hall, P. and Lahiri, S. N. (2008). Estimation of distributions, moments and quantiles in deconvolution problems. Ann. Statist. 36 2110–2134.
  • Hall, P. and Ma, Y. (2007). Testing the suitability of polynomial models in errors-in-variables problems. Ann. Statist. 35 2620–2638.
  • Hall, P. and Maiti, T. (2009). Deconvolution methods for non-parametric inference in two-level mixed models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 703–718.
  • Hall, P. and Meister, A. (2007). A ridge-parameter approach to deconvolution. Ann. Statist. 35 1535–1558.
  • Hall, P. and Qiu, P. (2005). Discrete-transform approach to deconvolution problems. Biometrika 92 135–148.
  • Hall, P. and Qiu, P. (2007a). Blind deconvolution and deblurring in image analysis. Statist. Sinica 17 1483–1509.
  • Hall, P. and Qiu, P. (2007b). Nonparametric estimation of a point-spread function in multivariate problems. Ann. Statist. 35 1512–1534.
  • Hall, P. and Simar, L. (2002). Estimating a changepoint, boundary, or frontier in the presence of observation error. J. Amer. Statist. Assoc. 97 523–534.
  • Hall, P. and Titterington, D. M. (1986). On some smoothing techniques used in image restoration. J. Roy. Statist. Soc. Ser. B 48 330–343.
  • Lee, M., Hall, P., Shen, H., Marron, J. S., Tolle, J. and Burch, C. (2013). Deconvolution estimation of mixture distributions with boundaries. Electron. J. Stat. 7 323–341.
  • Li, T. and Vuong, Q. (1998). Nonparametric estimation of the measurement error model using multiple indicators. J. Multivariate Anal. 65 139–165.
  • Meister, A. (2006). Density estimation with normal measurement error with unknown variance. Statist. Sinica 16 195–211.
  • Müller, H.-G. (2016). Peter Hall, functional data analysis and random objects. Ann. Statist. 44 1867–1887.
  • Neumann, M. H. (1997). On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist. 7 307–330.
  • Staudenmayer, J. and Ruppert, D. (2004). Local polynomial regression and simulation-extrapolation. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 17–30.
  • Stefanski, L. and Carroll, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21 169–184.