Annals of Statistics

Joint asymptotics for semi-nonparametric regression models with partially linear structure

Guang Cheng and Zuofeng Shang

Full-text: Open access

Abstract

We consider a joint asymptotic framework for studying semi-nonparametric regression models where (finite-dimensional) Euclidean parameters and (infinite-dimensional) functional parameters are both of interest. The class of models in consideration share a partially linear structure and are estimated in two general contexts: (i) quasi-likelihood and (ii) true likelihood. We first show that the Euclidean estimator and (pointwise) functional estimator, which are re-scaled at different rates, jointly converge to a zero-mean Gaussian vector. This weak convergence result reveals a surprising joint asymptotics phenomenon: these two estimators are asymptotically independent. A major goal of this paper is to gain first-hand insights into the above phenomenon. Moreover, a likelihood ratio testing is proposed for a set of joint local hypotheses, where a new version of the Wilks phenomenon [ Ann. Math. Stat. 9 (1938) 60–62; Ann. Statist. 1 (2001) 153–193] is unveiled. A novel technical tool, called a joint Bahadur representation, is developed for studying these joint asymptotics results.

Article information

Source
Ann. Statist., Volume 43, Number 3 (2015), 1351-1390.

Dates
Received: May 2014
Revised: January 2015
First available in Project Euclid: 15 May 2015

Permanent link to this document
https://projecteuclid.org/euclid.aos/1431695647

Digital Object Identifier
doi:10.1214/15-AOS1313

Mathematical Reviews number (MathSciNet)
MR3346706

Zentralblatt MATH identifier
1320.62087

Subjects
Primary: 62G20: Asymptotic properties 62F12: Asymptotic properties of estimators
Secondary: 62F03: Hypothesis testing

Keywords
Joint asymptotics joint Bahadur representation local likelihood ratio test semi-nonparametric models smoothing spline

Citation

Cheng, Guang; Shang, Zuofeng. Joint asymptotics for semi-nonparametric regression models with partially linear structure. Ann. Statist. 43 (2015), no. 3, 1351--1390. doi:10.1214/15-AOS1313. https://projecteuclid.org/euclid.aos/1431695647


Export citation

References

  • [1] Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577–580.
  • [2] Banerjee, M., Mukherjee, D. and Mishra, S. (2009). Semiparametric binary regression models under shape constraints with an application to Indian schooling data. J. Econometrics 149 101–117.
  • [3] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1998). Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York.
  • [4] Birkhoff, G. D. (1908). Boundary value and expansion problems of ordinary linear differential equations. Trans. Amer. Math. Soc. 9 373–395.
  • [5] Boente, G., He, X. and Zhou, J. (2006). Robust estimates in generalized partially linear models. Ann. Statist. 34 2856–2878.
  • [6] Cheng, G. and Shang, Z. (2015). Supplement to “Joint asymptotics for semi-nonparametric regression models with partially linear structure.” DOI:10.1214/15-AOS1313SUPP.
  • [7] Cheng, G. (2009). Semiparametric additive isotonic regression. J. Statist. Plann. Inference 139 1980–1991.
  • [8] Cheng, G. and Huang, J. Z. (2010). Bootstrap consistency for general semiparametric $M$-estimation. Ann. Statist. 38 2884–2915.
  • [9] Cheng, G. and Kosorok, M. R. (2008). General frequentist properties of the posterior profile distribution. Ann. Statist. 36 1819–1853.
  • [10] Cheng, G. and Kosorok, M. R. (2009). The penalized profile sampler. J. Multivariate Anal. 100 345–362.
  • [11] Cox, D. D. and O’Sullivan, F. (1990). Asymptotic analysis of penalized likelihood and related estimators. Ann. Statist. 18 1676–1695.
  • [12] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153–193.
  • [13] Gu, C. (2002). Smoothing Spline ANOVA Models. Springer, New York.
  • [14] Heckman, J. and Leamer, E. E., eds. (2007). Handbook of Econometrics, Vol. 6. Elsevier, Amsterdam.
  • [15] Huang, J. (1999). Efficient estimation of the partly linear additive Cox model. Ann. Statist. 27 1536–1563.
  • [16] Ke, C. Wang, C. W. (2002). ASSIST: A suite of S-plus functions implementing spline smoothing techniques. Preprint.
  • [17] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann. Statist. 18 191–219.
  • [18] Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. Springer, New York.
  • [19] Kosorok, M. R., Lee, B. L. and Fine, J. P. (2004). Robust inference for univariate proportional hazards frailty regression models. Ann. Statist. 32 1448–1491.
  • [20] Li, Y., Prentice, R. L. and Lin, X. (2008). Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data. Biometrika 95 947–960.
  • [21] Lopuhaä, H. P. and Nane, G. F. (2013). Shape constrained non-parametric estimators of the baseline distribution in Cox proportional hazards model. Scand. J. Stat. 40 619–646.
  • [22] Mammen, E. and van de Geer, S. (1997). Penalized quasi-likelihood estimation in partial linear models. Ann. Statist. 25 1014–1035.
  • [23] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. Chapman & Hall, London.
  • [24] Messer, K. and Goldstein, L. (1993). A new class of kernels for nonparametric curve estimation. Ann. Statist. 21 179–195.
  • [25] Murphy, S. A. and van der Vaart, A. W. (2000). On profile likelihood. J. Amer. Statist. Assoc. 95 449–485.
  • [26] Nychka, D. (1995). Splines as local smoothers. Ann. Statist. 23 1175–1197.
  • [27] Radchenko, P. (2008). Mixed-rates asymptotics. Ann. Statist. 36 287–309.
  • [28] Saitoh, S. (1997). Integral Transforms, Reproducing Kernels and Their Applications. Pitman Research Notes in Mathematics Series 369. Longman, Harlow.
  • [29] Severini, T. A. and Staniswalis, J. G. (1994). Quasi-likelihood estimation in semiparametric models. J. Amer. Statist. Assoc. 89 501–511.
  • [30] Shang, Z. and Cheng, G. (2013). Local and global asymptotic inference in smoothing spline models. Ann. Statist. 41 2608–2638.
  • [31] Shang, Z. and Cheng, G. (2014). Nonparametric inference in generalized functional linear models. Purdue Technical Report.
  • [32] Shin, H. (2009). Partial functional linear regression. J. Statist. Plann. Inference 139 3405–3418.
  • [33] Stone, M. H. (1926). A comparison of the series of Fourier and Birkhoff. Trans. Amer. Math. Soc. 28 695–761.
  • [34] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.
  • [35] Wahba, G. (1990). Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics 59. SIAM, Philadelphia, PA.
  • [36] Wang, Y. (2011). Smoothing Splines: Methods and Applications. Monographs on Statistics and Applied Probability 121. CRC Press, Boca Raton, FL.
  • [37] Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss–Newton method. Biometrika 61 439–447.
  • [38] Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9 60–62.

Supplemental materials