The Annals of Statistics

Rejoinder: “A significance test for the lasso”

Richard Lockhart, Jonathan Taylor, Ryan J. Tibshirani, and Robert Tibshirani

Full-text: Open access

Article information

Ann. Statist., Volume 42, Number 2 (2014), 518-531.

First available in Project Euclid: 20 May 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Lockhart, Richard; Taylor, Jonathan; Tibshirani, Ryan J.; Tibshirani, Robert. Rejoinder: “A significance test for the lasso”. Ann. Statist. 42 (2014), no. 2, 518--531. doi:10.1214/14-AOS1175REJ.

Export citation


  • Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference. Ann. Statist. 41 802–837.
  • Bühlmann, P. and Mandozzi, J. (2013). High-dimensional variable screening and bias in subsequent inference, with an empirical comparison. Comput. Statist. DOI 10.1007/s00180-013-0436-3.
  • Grazier G’Sell, M., Hastie, T. and Tibshirani, R. (2013). False variable selection rates in regression. Preprint. Available at arXiv:1302.2303.
  • Grazier G’Sell, M., Wager, S., Chouldechova, A. and Tibshirani, R. (2013). False discovery rate control for sequential selection procedures, with application to the lasso. Preprint. Available at arXiv:1309.5352.
  • Javanmard, A. and Montanari, A. (2013). Confidence intervals and hypothesis testing for high-dimensional regression. Preprint. Available at arXiv:1306.3171.
  • Lee, J., Sun, D., Sun, Y. and Taylor, J. E. (2013). Exact inference after model selection via the lasso. Preprint. Available at arXiv:1311.6238.
  • Taylor, J., Loftus, J. and Tibshirani, R. J. (2013). Tests in adaptive regression via the Kac–Rice formula. Preprint. Available at arXiv:1308.3020.
  • Taylor, J., Lockhart, R., Tibshirani, R. J. and Tibshirani, R. (2014). Post-selection adaptive inference for least angle regression and the lasso. Preprint. Available at arXiv:1401.3889.
  • van de Geer, S., Bühlmann, P. and Ritov, Y. (2013). On asymptotically optimal confidence regions and tests for high-dimensional models. Preprint. Available at arXiv:1303.0518.
  • Zhang, C.-H. and Zhang, S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 76 217–242.

See also