The Annals of Statistics

Rotation and scale space random fields and the Gaussian kinematic formula

Robert J. Adler, Eliran Subag, and Jonathan E. Taylor

Full-text: Open access

Abstract

We provide a new approach, along with extensions, to results in two important papers of Worsley, Siegmund and coworkers closely tied to the statistical analysis of fMRI (functional magnetic resonance imaging) brain data. These papers studied approximations for the exceedence probabilities of scale and rotation space random fields, the latter playing an important role in the statistical analysis of fMRI data. The techniques used there came either from the Euler characteristic heuristic or via tube formulae, and to a large extent were carefully attuned to the specific examples of the paper.

This paper treats the same problem, but via calculations based on the so-called Gaussian kinematic formula. This allows for extensions of the Worsley–Siegmund results to a wide class of non-Gaussian cases. In addition, it allows one to obtain results for rotation space random fields in any dimension via reasonably straightforward Riemannian geometric calculations. Previously only the two-dimensional case could be covered, and then only via computer algebra.

By adopting this more structured approach to this particular problem, a solution path for other, related problems becomes clearer.

Article information

Source
Ann. Statist., Volume 40, Number 6 (2012), 2910-2942.

Dates
First available in Project Euclid: 8 February 2013

Permanent link to this document
https://projecteuclid.org/euclid.aos/1360332188

Digital Object Identifier
doi:10.1214/12-AOS1055

Mathematical Reviews number (MathSciNet)
MR3097964

Zentralblatt MATH identifier
1296.60132

Subjects
Primary: 60G60: Random fields 60G15: Gaussian processes
Secondary: 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65] 62M30: Spatial processes 52A22: Random convex sets and integral geometry [See also 53C65, 60D05] 60G70: Extreme value theory; extremal processes

Keywords
Rotation space scale space random fields Gaussian kinematic formula Lipschitz–Killing curvatures Euler characteristic thresholding fMRI

Citation

Adler, Robert J.; Subag, Eliran; Taylor, Jonathan E. Rotation and scale space random fields and the Gaussian kinematic formula. Ann. Statist. 40 (2012), no. 6, 2910--2942. doi:10.1214/12-AOS1055. https://projecteuclid.org/euclid.aos/1360332188


Export citation

References

  • [1] Adler, R. J. (2000). On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab. 10 1–74.
  • [2] Adler, R. J., Bartz, K. and Kou, S. C. (2011). Estimating thresholding levels for random fields via Euler characteristics. Unpublished manuscript.
  • [3] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer, New York.
  • [4] Adler, R. J., Taylor, J. E. and Worsley, K. J. (2013). Applications of Random Fields and Geometry: Foundations and Case Studies. Springer. To appear. Early chapters available at http://webee.technion.ac.il/people/adler/publications.html.
  • [5] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press, Cambridge.
  • [6] Federer, H. (1959). Curvature measures. Trans. Amer. Math. Soc. 93 418–491.
  • [7] Gibson, C. G., Wirthmüller, K., du Plessis, A. A. and Looijenga, E. J. N. (1976). Topological Stability of Smooth Mappings. Lecture Notes in Mathematics 552. Springer, Berlin.
  • [8] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge Univ. Press, Cambridge.
  • [9] Shafie, K., Sigal, B., Siegmund, D. and Worsley, K. J. (2003). Rotation space random fields with an application to fMRI data. Ann. Statist. 31 1732–1771.
  • [10] Siegmund, D. O. and Worsley, K. J. (1995). Testing for a signal with unknown location and scale in a stationary Gaussian random field. Ann. Statist. 23 608–639.
  • [11] Taylor, J., Takemura, A. and Adler, R. J. (2005). Validity of the expected Euler characteristic heuristic. Ann. Probab. 33 1362–1396.
  • [12] Taylor, J. E. (2001). Euler characteristics for Gaussian fields on manifolds. Ph.D. thesis, McGill Univ., Montreal.
  • [13] Taylor, J. E. (2006). A Gaussian kinematic formula. Ann. Probab. 34 122–158.
  • [14] Taylor, J. E. and Adler, R. J. (2009). Gaussian processes, kinematic formulae and Poincaré’s limit. Ann. Probab. 37 1459–1482.
  • [15] Taylor, J. E. and Worsley, K. J. (2007). Detecting sparse signals in random fields, with an application to brain mapping. J. Amer. Statist. Assoc. 102 913–928.
  • [16] Worsley, K. J. (2001). Testing for signals with unknown location and scale in a $\chi^2$ random field, with an application to fMRI. Adv. in Appl. Probab. 33 773–793.