The Annals of Statistics
- Ann. Statist.
- Volume 39, Number 6 (2011), 3003-3031.
Posterior consistency of nonparametric conditional moment restricted models
Full-text: Open access
Abstract
This paper addresses the estimation of the nonparametric conditional moment restricted model that involves an infinite-dimensional parameter g0. We estimate it in a quasi-Bayesian way, based on the limited information likelihood, and investigate the impact of three types of priors on the posterior consistency: (i) truncated prior (priors supported on a bounded set), (ii) thin-tail prior (a prior that has very thin tail outside a growing bounded set) and (iii) normal prior with nonshrinking variance. In addition, g0 is allowed to be only partially identified in the frequentist sense, and the parameter space does not need to be compact. The posterior is regularized using a slowly growing sieve dimension, and it is shown that the posterior converges to any small neighborhood of the identified region. We then apply our results to the nonparametric instrumental regression model. Finally, the posterior consistency using a random sieve dimension parameter is studied.
Article information
Source
Ann. Statist., Volume 39, Number 6 (2011), 3003-3031.
Dates
First available in Project Euclid: 24 January 2012
Permanent link to this document
https://projecteuclid.org/euclid.aos/1327413776
Digital Object Identifier
doi:10.1214/11-AOS930
Mathematical Reviews number (MathSciNet)
MR3012399
Zentralblatt MATH identifier
1246.62087
Subjects
Primary: 62F15: Bayesian inference 62G08: Nonparametric regression 62G20: Asymptotic properties
Secondary: 62P20: Applications to economics [See also 91Bxx]
Keywords
Identified region limited information likelihood sieve approximation nonparametric instrumental variable ill-posed problem partial identification Bayesian inference shrinkage prior regularization
Citation
Liao, Yuan; Jiang, Wenxin. Posterior consistency of nonparametric conditional moment restricted models. Ann. Statist. 39 (2011), no. 6, 3003--3031. doi:10.1214/11-AOS930. https://projecteuclid.org/euclid.aos/1327413776
References
- Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71 1795–1843.Mathematical Reviews (MathSciNet): MR2015420
Digital Object Identifier: doi:10.1111/1468-0262.00470
Zentralblatt MATH: 1154.62323 - Antoniadis, A., Grégoire, G. and McKeague, I. W. (2004). Bayesian estimation in single-index models. Statist. Sinica 14 1147–1164.
- Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica (Bologna) 46 199–208.
- Blundell, R., Chen, X. and Kristensen, D. (2007). Semi-nonparametric IV estimation of shape-invariant Engel curves. Econometrica 75 1613–1669.Mathematical Reviews (MathSciNet): MR2351452
Digital Object Identifier: doi:10.1111/j.1468-0262.2007.00808.x
Zentralblatt MATH: 1133.91461 - Carrasco, M., Florens, J. and Renault, E. (2007). Linear inverse problems in structural econometrics estimation based on spectral decomposition and regularization. In Handbook of Econometrics (J. J. Heckman and E. E. Leamer, eds.) VI Chapter 77. North-Holland, Amsterdam.Mathematical Reviews (MathSciNet): MR1807779
Digital Object Identifier: doi:10.1016/S0304-4076(00)00044-0 - Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. In Handbook of Econometrics (J. J. Heckman and E. E. Leamer, eds.) VI Chapter 76. North-Holland, Amsterdam.
- Chen, X. and Ludvigson, S. C. (2009). Land of addicts? An empirical investigation of habit-based asset pricing models. J. Appl. Econometrics 24 1057–1093.
- Chen, X. and Pouzo, D. (2009a). Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica. To appear. Cowles Foundation Discussion Paper 1650R, Yale Univ.
- Chen, X. and Pouzo, D. (2009b). Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. J. Econometrics 152 46–60.Mathematical Reviews (MathSciNet): MR2562763
Digital Object Identifier: doi:10.1016/j.jeconom.2009.02.002
Zentralblatt MATH: 06604113 - Chen, X. and Reiss, M. (2011). On rate optimality for ill-posed inverse problems in econometrics. Econometric Theory 27 497–521.Mathematical Reviews (MathSciNet): MR2806258
Digital Object Identifier: doi:10.1017/S0266466610000381
Zentralblatt MATH: 1218.62028 - Chernozhukov, V., Gagliardini, P. and Scaillet, O. (2008). Nonparametric instrumental variable estimation of quantile structural effects. Unpublished manuscript. MIT, Cambridge, MA.
- Chernozhukov, V. and Hansen, C. (2005). An IV model of quantile treatment effects. Econometrica 73 245–261.Mathematical Reviews (MathSciNet): MR2115636
Digital Object Identifier: doi:10.1111/j.1468-0262.2005.00570.x
Zentralblatt MATH: 1152.91706 - Chernozhukov, V. and Hong, H. (2003). An MCMC approach to classical estimation. J. Econometrics 115 293–346.Mathematical Reviews (MathSciNet): MR1984779
Digital Object Identifier: doi:10.1016/S0304-4076(03)00100-3
Zentralblatt MATH: 1043.62022 - Chernozhukov, V., Hong, H. and Tamer, E. (2007). Estimation and confidence regions for parameter sets in econometric models. Econometrica 75 1243–1284.Mathematical Reviews (MathSciNet): MR2347346
Digital Object Identifier: doi:10.1111/j.1468-0262.2007.00794.x
Zentralblatt MATH: 1133.91032 - Chernozhukov, V., Imbens, G. W. and Newey, W. K. (2007). Instrumental variable estimation of nonseparable models. J. Econometrics 139 4–14.Mathematical Reviews (MathSciNet): MR2380756
Digital Object Identifier: doi:10.1016/j.jeconom.2006.06.002
Zentralblatt MATH: 06578068 - Choi, T. and Schervish, M. J. (2007). On posterior consistency in nonparametric regression problems. J. Multivariate Anal. 98 1969–1987.Mathematical Reviews (MathSciNet): MR2396949
Digital Object Identifier: doi:10.1016/j.jmva.2007.01.004
Zentralblatt MATH: 1138.62020 - Darolles, S., Fan, Y., Florens, J. P. and Renault, E. (2011). Nonparametric instrumental regression. Econometrica 79 1541–1565.Mathematical Reviews (MathSciNet): MR2883763
Digital Object Identifier: doi:10.3982/ECTA6539
Zentralblatt MATH: 1274.62277 - D’Haultfoeuille, X. (2011). On the completeness condition in nonparametric instrumental problems. Econometric Theory 27 460–471.Mathematical Reviews (MathSciNet): MR2806256
Digital Object Identifier: doi:10.1017/S0266466610000368 - Florens, J. (2003). Inverse problems and structural econometrics: The example of instrumental variables. In Advances in Economics End Econometrics: Theory and Applications (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.). Invited Lectures to the World Congress of the Econometric Society, Seattle 2000 II 284–311. Cambridge Univ. Press, Cambridge.Mathematical Reviews (MathSciNet): MR2205397
- Florens, J. and Simoni, A. (2009a). Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior. Unpublished manuscript. Toulouse School of Economics, Toulouse, France.
- Florens, J. and Simoni, A. (2009b). Regularizing priors for linear inverse problems. Unpublished manuscript. Toulouse School of Economics, Toulouse, France.
- Florens, J. and Simoni, A. (2011). Bayesian identification and partial identification. Unpublished manuscript. Toulouse School of Economics, Toulouse, France.
- Gallant, A. R. and Tauchen, G. (1989). Seminonparametric estimation of conditionally constrained heterogeneous processes: Asset pricing applications. Econometrica 57 1091–1120.Mathematical Reviews (MathSciNet): MR1014542
Digital Object Identifier: doi:10.2307/1913624
Zentralblatt MATH: 0679.62096 - Ghosal, S. and Roy, A. (2006). Posterior consistency of Gaussian process prior for nonparametric binary regression. Ann. Statist. 34 2413–2429.Mathematical Reviews (MathSciNet): MR2291505
Digital Object Identifier: doi:10.1214/009053606000000795
Project Euclid: euclid.aos/1169571802
Zentralblatt MATH: 1106.62039 - Ghosal, S. and van der Vaart, A. (2007). Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 192–223.Mathematical Reviews (MathSciNet): MR2332274
Digital Object Identifier: doi:10.1214/009053606000001172
Project Euclid: euclid.aos/1181100186
Zentralblatt MATH: 1114.62060 - Ghosh, J. K. and Ramamoorthi, R. V. (2003). Bayesian Nonparametrics. Springer, New York.
- Hall, P. and Horowitz, J. L. (2005). Nonparametric methods for inference in the presence of instrumental variables. Ann. Statist. 33 2904–2929.Mathematical Reviews (MathSciNet): MR2253107
Digital Object Identifier: doi:10.1214/009053605000000714
Project Euclid: euclid.aos/1140191678
Zentralblatt MATH: 1084.62033 - Han, C. and Phillips, P. C. B. (2006). GMM with many moment conditions. Econometrica 74 147–192.Mathematical Reviews (MathSciNet): MR2194322
Digital Object Identifier: doi:10.1111/j.1468-0262.2006.00652.x
Zentralblatt MATH: 1112.62136 - Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 1029–1054.Mathematical Reviews (MathSciNet): MR666123
Digital Object Identifier: doi:10.2307/1912775
Zentralblatt MATH: 0502.62098 - Hansen, B. (2002). Econometrics. Unpublished manuscript. Univ. Wisconsin, Madison.
- Horowitz, J. L. (2007). Asymptotic normality of a nonparametric instrumental variables estimator. Internat. Econom. Rev. 48 1329–1349.Mathematical Reviews (MathSciNet): MR2375627
Digital Object Identifier: doi:10.1111/j.1468-2354.2007.00464.x - Horowitz, J. (2010). Adaptive nonparametric instrumental variables estimation: Empirical choice of the regularization parameter. Unpublished manuscript. Northwestern Univ.
- Horowitz, J. L. (2011). Applied nonparametric instrumental variables estimation. Econometrica 79 347–394.Mathematical Reviews (MathSciNet): MR2809374
Digital Object Identifier: doi:10.3982/ECTA8662
Zentralblatt MATH: 1210.62034 - Horowitz, J. L. and Lee, S. (2007). Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75 1191–1208.Mathematical Reviews (MathSciNet): MR2333498
Digital Object Identifier: doi:10.1111/j.1468-0262.2007.00786.x
Zentralblatt MATH: 1134.62024 - Huang, T.-M. (2004). Convergence rates for posterior distributions and adaptive estimation. Ann. Statist. 32 1556–1593.Mathematical Reviews (MathSciNet): MR2089134
Digital Object Identifier: doi:10.1214/009053604000000490
Project Euclid: euclid.aos/1091626179
Zentralblatt MATH: 1095.62055 - Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71–120.Mathematical Reviews (MathSciNet): MR1230981
Digital Object Identifier: doi:10.1016/0304-4076(93)90114-K
Zentralblatt MATH: 0816.62079 - Imbens, G. W., Spady, R. H. and Johnson, P. (1998). Information-theoretic approaches to inference in moment condition models. Econometrica 66 333–357.Mathematical Reviews (MathSciNet): MR1612246
Digital Object Identifier: doi:10.2307/2998561
Zentralblatt MATH: 1055.62512 - Jiang, W. and Tanner, M. A. (2008). Gibbs posterior for variable selection in high-dimensional classification and data mining. Ann. Statist. 36 2207–2231.Mathematical Reviews (MathSciNet): MR2458185
Digital Object Identifier: doi:10.1214/07-AOS547
Project Euclid: euclid.aos/1223908090
Zentralblatt MATH: 1274.62227 - Johannes, J., Van Bellegem, S. and Vanhems, A. (2010). Iterative regularization in nonparametric instrumental regression. Unpublished manuscript. Toulouse School of Economics, Toulouse, France.
- Kim, J.-Y. (2002). Limited information likelihood and Bayesian analysis. J. Econometrics 107 175–193.Mathematical Reviews (MathSciNet): MR1889958
Digital Object Identifier: doi:10.1016/S0304-4076(01)00119-1
Zentralblatt MATH: 1030.62016 - Kitamura, Y. (2006). Empirical likelihood methods in econometrics: Theory and practice. Unpublished manuscript. Yale Univ.
- Kress, R. (1999). Linear Integral Equations, 2nd ed. Applied Mathematical Sciences 82. Springer, New York.
- Liao, Y. and Jiang, W. (2010). Bayesian analysis in moment inequality models. Ann. Statist. 38 275–316.Mathematical Reviews (MathSciNet): MR2589323
Digital Object Identifier: doi:10.1214/09-AOS714
Project Euclid: euclid.aos/1262271616
Zentralblatt MATH: 1181.62025 - Liao, Y. and Jiang, W. (2011a). Supplement to “Posterior consistency of nonparametric conditional moment restricted models.” DOI:10.1214/11-AOS930SUPP.
- Liao, Y. and Jiang, W. (2011b). Posterior consistency of nonparametric conditional moment restricted models using a shrinking prior. Technical report, Northwestern Univ. Available at http://newton.stats.northwestern.edu/~jiang/cmrm/suppG.pdf.Zentralblatt MATH: 1246.62087
Digital Object Identifier: doi:10.1214/11-AOS930
Project Euclid: euclid.aos/1327413776 - Meyer, Y. (1990). Ondelettes et Opérateurs. I. Hermann, Paris.Mathematical Reviews (MathSciNet): MR1085487
- Nair, M. T., Pereverzev, S. V. and Tautenhahn, U. (2005). Regularization in Hilbert scales under general smoothing conditions. Inverse Problems 21 1851–1869.Mathematical Reviews (MathSciNet): MR2183654
Digital Object Identifier: doi:10.1088/0266-5611/21/6/003
Zentralblatt MATH: 1093.65057 - Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica 71 1565–1578.Mathematical Reviews (MathSciNet): MR2000257
Digital Object Identifier: doi:10.1111/1468-0262.00459
Zentralblatt MATH: 1154.62415 - Newey, W. K. and Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72 219–255.Mathematical Reviews (MathSciNet): MR2031017
Digital Object Identifier: doi:10.1111/j.1468-0262.2004.00482.x
Zentralblatt MATH: 1151.62313 - Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90–120.Mathematical Reviews (MathSciNet): MR1041387
Digital Object Identifier: doi:10.1214/aos/1176347494
Project Euclid: euclid.aos/1176347494
Zentralblatt MATH: 0712.62040 - Santos, A. (2011). Instrumental variable methods for recovering continuous linear functionals. J. Econometrics 161 129–146.Mathematical Reviews (MathSciNet): MR2774933
Digital Object Identifier: doi:10.1016/j.jeconom.2010.11.014
Zentralblatt MATH: 06610685 - Santos, A. (2012). Inference in nonparametric instrumental variables with partial identification. Econometrica 80 213–275.Mathematical Reviews (MathSciNet): MR2920757
Digital Object Identifier: doi:10.3982/ECTA7493
Zentralblatt MATH: 1274.62329 - Schumaker, L. L. (1981). Spline Functions: Basic Theory. Wiley, New York.
- Severini, T. A. and Tripathi, G. (2006). Some identification issues in nonparametric linear models with endogenous regressors. Econometric Theory 22 258–278.Mathematical Reviews (MathSciNet): MR2230389
Digital Object Identifier: doi:10.1017/S0266466606060117
Zentralblatt MATH: 1127.62040 - Shen, X. and Wasserman, L. (2001). Rates of convergence of posterior distributions. Ann. Statist. 29 687–714.Mathematical Reviews (MathSciNet): MR1865337
Digital Object Identifier: doi:10.1214/aos/1009210686
Project Euclid: euclid.aos/1009210686
Zentralblatt MATH: 1041.62022 - Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75 317–343.
- Tautenhahn, U. (1998). Optimality for ill-posed problems under general source conditions. Numer. Funct. Anal. Optim. 19 377–398.Mathematical Reviews (MathSciNet): MR1624930
Digital Object Identifier: doi:10.1080/01630569808816834
Zentralblatt MATH: 0907.65049 - Walker, S. (2003). Bayesian consistency for a class of regression problems. South African Statist. J. 37 149–167.Mathematical Reviews (MathSciNet): MR2042627
Supplemental materials
- Supplementary material: Technical proofs. This supplementary material contains the proofs of all the results developed in the main paper.Digital Object Identifier: doi:10.1214/11-AOS930SUPP

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Quasi-Bayesian analysis of nonparametric instrumental variables models
Kato, Kengo, The Annals of Statistics, 2013 - Dynamics of Bayesian updating with dependent data and misspecified models
Shalizi, Cosma Rohilla, Electronic Journal of Statistics, 2009 - On posterior consistency of tail index for Bayesian kernel mixture models
Li, Cheng, Lin, Lizhen, and Dunson, David B., Bernoulli, 2019
- Quasi-Bayesian analysis of nonparametric instrumental variables models
Kato, Kengo, The Annals of Statistics, 2013 - Dynamics of Bayesian updating with dependent data and misspecified models
Shalizi, Cosma Rohilla, Electronic Journal of Statistics, 2009 - On posterior consistency of tail index for Bayesian kernel mixture models
Li, Cheng, Lin, Lizhen, and Dunson, David B., Bernoulli, 2019 - Criteria for posterior consistency and convergence at a rate
Kleijn, B. J. K. and Zhao, Y. Y., Electronic Journal of Statistics, 2019 - Bayesian analysis in moment inequality models
Liao, Yuan and Jiang, Wenxin, The Annals of Statistics, 2010 - On the frequentist coverage of Bayesian credible intervals for lower bounded means
Marchand, Éric, Strawderman, William E., Bosa, Keven, and Lmoudden, Aziz, Electronic Journal of Statistics, 2008 - On adaptive posterior concentration rates
Hoffmann, Marc, Rousseau, Judith, and Schmidt-Hieber, Johannes, The Annals of Statistics, 2015 - Robustness to outliers in location–scale parameter model using log-regularly varying distributions
Desgagné, Alain, The Annals of Statistics, 2015 - On the behavior of Bayesian credible intervals for some restricted parameter space problems
Marchand, Éric and Strawderman, William E., Recent Developments in Nonparametric Inference and Probability, 2006 - Posterior rates of convergence for Dirichlet mixtures of exponential power densities
Scricciolo, Catia, Electronic Journal of Statistics, 2011