The Annals of Statistics
- Ann. Statist.
- Volume 37, Number 5B (2009), 2730-2759.
Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes
Jean-Marc Bardet and Olivier Wintenberger
Abstract
Strong consistency and asymptotic normality of the quasi-maximum likelihood estimator are given for a general class of multidimensional causal processes. For particular cases already studied in the literature [for instance univariate or multivariate ARCH(∞) processes], the assumptions required for establishing these results are often weaker than existing conditions. The QMLE asymptotic behavior is also given for numerous new examples of univariate or multivariate processes (for instance TARCH or NLARCH processes).
Article information
Source
Ann. Statist., Volume 37, Number 5B (2009), 2730-2759.
Dates
First available in Project Euclid: 17 July 2009
Permanent link to this document
https://projecteuclid.org/euclid.aos/1247836667
Digital Object Identifier
doi:10.1214/08-AOS674
Mathematical Reviews number (MathSciNet)
MR2541445
Zentralblatt MATH identifier
1173.62063
Subjects
Primary: 62M10: Time series, auto-correlation, regression, etc. [See also 91B84] 62F12: Asymptotic properties of estimators
Keywords
Quasi-maximum likelihood estimator strong consistency asymptotic normality multidimensional causal processes multivariate ARMA–GARCH processes
Citation
Bardet, Jean-Marc; Wintenberger, Olivier. Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes. Ann. Statist. 37 (2009), no. 5B, 2730--2759. doi:10.1214/08-AOS674. https://projecteuclid.org/euclid.aos/1247836667