The Annals of Statistics

Asymptotics for spherical needlets

P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard

Full-text: Open access


We investigate invariant random fields on the sphere using a new type of spherical wavelets, called needlets. These are compactly supported in frequency and enjoy excellent localization properties in real space, with quasi-exponentially decaying tails. We show that, for random fields on the sphere, the needlet coefficients are asymptotically uncorrelated for any fixed angular distance. This property is used to derive CLT and functional CLT convergence results for polynomial functionals of the needlet coefficients: here the asymptotic theory is considered in the high-frequency sense. Our proposals emerge from strong empirical motivations, especially in connection with the analysis of cosmological data sets.

Article information

Ann. Statist., Volume 37, Number 3 (2009), 1150-1171.

First available in Project Euclid: 10 April 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62M40: Random fields; image analysis 60F05: Central limit and other weak theorems 60F17: Functional limit theorems; invariance principles
Secondary: 62G20: Asymptotic properties

High-frequency asymptotics spherical needlets random fields central limit theorem tests for Gaussianity and isotropy


Baldi, P.; Kerkyacharian, G.; Marinucci, D.; Picard, D. Asymptotics for spherical needlets. Ann. Statist. 37 (2009), no. 3, 1150--1171. doi:10.1214/08-AOS601.

Export citation


  • Angers, J.-F. and Kim, P. (2005). Multivariate Bayesian function estimation. Ann. Statist. 33 2967–2999.
  • Antoine, J.-P. and Vandergheynst, P. (1999). Wavelets on the 2-sphere: A group-theoretical approach. Appl. Comput. Harmon. Anal. 7 262–291.
  • Antoine, J.-P., Demanet, L., Jacques, L. and Vandergheynst, P. (2002). Wavelets on the sphere: Implementation and approximations. Appl. Comput. Harmon. Anal. 13 177–200.
  • Baldi, P., Kerkyacharian, G., Marinucci, D. and Picard, D. (2008). High-frequency asymptotics for wavelet-based tests for Gaussianity and isotropy on the Torus. J. Multivariate Anal. 99 606–636.
  • Dette, H., Melas, V. B. and Pepelyshev, A. (2005). Optimal designs for three-dimensional shape analysis with spherical harmonic descriptors. Ann. Statist. 33 2758–2788.
  • Dryden, I. L. (2005). Statistical analysis on high-dimensional spheres and shape spaces. Ann. Statist. 33 1643–1665.
  • Genovese, C. R., Miller, C. J., Nichol, R. C., Arjunwadkar, M. and Wasserman, L. (2004a). Nonparametric inference for the cosmic microwave background. Statist. Sci. 19 308–321.
  • Genovese, C. R., Wasserman, L. and Casella, G. (2004b). Introduction to the special section on astrostatistics. Statist. Sci. 19 264.
  • Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M. and Bartelmann, M. (2005). HEALPix: A Framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622 759–771.
  • Guilloux, F., Fay, G. and Cardoso, J.-F. (2007). Practical wavelet design on the sphere. arxiv:0706.2598v1. Submitted.
  • Kerkyacharian, G., Petrushev, P., Picard, D. and Willer, T. (2007). Needlet algorithms for estimation in inverse problems. Electron. J. Statist. 1 30–76.
  • Mardia, K. V. and Patrangenaru, V. (2005). Directions and projective shapes. Ann. Statist. 33 1666–1699.
  • Marinucci, D. (2004). Testing for non-Gaussianity on cosmic microwave background radiation: A review. Statist. Sci. 19 294–307.
  • Marinucci, D. (2006). High-resolution asymptotics for the angular bispectrum of spherical random fields. Ann. Statist. 34 1–41.
  • Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P., Picard, D. and Vittorio, N. (2008). Spherical needlets for cosmic microwave background data analysis. Monthly Notices Roy. Astronom. Soc. 383 539–545.
  • Narcowich, F. J., Petrushev, P. and Ward, J. D. (2006). Localized tight frames on spheres. SIAM J. Math. Anal. 38 574–594.
  • Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177–193.
  • Pietrobon, D., Balbi, A. and Marinucci, D. (2006). Integrated Sachs–Wolfe effect from the cross-correlation of WMAP 3 year and NVSS: New results and constraints on dark energy. Phys. Rev. D 74 (043524).
  • Stein, E. M. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton Univ. Press, Princeton, NJ.
  • Surgailis, D. (2003). CLTs for polynomials of linear sequences: Diagram formula with illustrations. In Theory and Applications of Long-Range Dependence 111–127. Birkhäuser Boston, Boston, MA.
  • Varshalovich, D. A., Moskalev, A. N. and Khersonskiĭ, V. K. (1988). Quantum Theory of Angular Momentum. World Scientific, Teaneck, NJ.