The Annals of Statistics

Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates

Yong Zhou and Hua Liang

Full-text: Open access

Abstract

We study semiparametric varying-coefficient partially linear models when some linear covariates are not observed, but ancillary variables are available. Semiparametric profile least-square based estimation procedures are developed for parametric and nonparametric components after we calibrate the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also propose the profile least-square based ratio test and Wald test to identify significant parametric and nonparametric components. To improve accuracy of the proposed tests for small or moderate sample sizes, a wild bootstrap version is also proposed to calculate the critical values. Intensive simulation experiments are conducted to illustrate the proposed approaches.

Article information

Source
Ann. Statist., Volume 37, Number 1 (2009), 427-458.

Dates
First available in Project Euclid: 16 January 2009

Permanent link to this document
https://projecteuclid.org/euclid.aos/1232115941

Digital Object Identifier
doi:10.1214/07-AOS561

Mathematical Reviews number (MathSciNet)
MR2488358

Zentralblatt MATH identifier
1156.62036

Subjects
Primary: 62G08: Nonparametric regression 62G10: Hypothesis testing
Secondary: 62G20: Asymptotic properties 62H15: Hypothesis testing

Keywords
Ancillary variables de-noise linear model errors-in-variable profile least-square-based estimator rational expection model validation data wild bootstrap

Citation

Zhou, Yong; Liang, Hua. Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates. Ann. Statist. 37 (2009), no. 1, 427--458. doi:10.1214/07-AOS561. https://projecteuclid.org/euclid.aos/1232115941


Export citation

References

  • Ahn, H. and Powell, J. L. (1993). Semiparametric estimation of censored selection models with a nonparametric selection mechanism. J. Econometrics 58 3–29.
  • Ai, C. and McFadden, D. (1997). Estimation of some partially specified nonlinear models. J. Econometrics 76 1–37.
  • Andrews, D. F. and Herzberg, A. M. (1985). Data. A Collection of Problems for Many Fields for Student and Research Worker. Springer, New York.
  • Brookmeyer, R. and Liao, J. (1992). Statistical models for reconstructing infection curves. In AIDS Epidemiology Issues (N. P. Jewell, K. Dietz and V. T. Farewell, eds.) 39–60. Birkhäuser, Boston.
  • Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. J. Amer. Statist. Assoc. 95 888–902.
  • Cai, Z., Naik, P. A. and Tsai, C.-L. (2000). De-noised least-squares estimators: An application to estimating advertising effectiveness. Statist. Sinica 10 1231–1241.
  • Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. J. Amer. Statist. Assoc. 92 477–489.
  • Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models, 2nd ed. Chapman and Hall, New York.
  • Chen, G., Choi, Y. and Zhou, Y. (2005). Nonparametric estimation for structural change points in volatility for time series. J. Econometrics 126 79–114.
  • Cui, H., He, X. and Zhu, L. (2002). On regression estimators with de-noised variables. Statist. Sinica 12 1191–1205.
  • Das, M. (2005). Instrumental variable estimators of nonparametric models with discrete endogenous regressors. J. Econometrics 124 335–361.
  • Engle, R. F., Granger, W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales. J. Amer. Statist. Assoc. 80 310–320.
  • Fan, J. Q. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications. Chapman and Hall, New York.
  • Fan, J. Q. and Huang, T. (2005). Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli 11 1031–1057.
  • Fan, J. Q. and Jiang, J. (2007). Nonparametric inference with generalized likelihood ratio tests (with discussion). Test. In press.
  • Fan, J. Q., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153–193.
  • Fan, J.Q. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Ann. Statist. 27 1491–1518.
  • Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.
  • Härdle, W., Liang, H. and Gao, J. T. (2000). Partially Linear Models. Verlag, Heidelberg.
  • Härdle, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21 1926–1947.
  • Hastie, T. J. and Tibshirani, R. (1993). Varying-coefficient models. J. Roy. Statist. Soc. Ser. B 55 757–796.
  • Li, Q. (2002). Semiparametric estimation of partially linear models for dependent data with generated regressors. Econ. Theory 19 625–645.
  • Liang, H., Härdle, W. and Carroll, R. J. (1999). Estimation in a semiparametric partially linear errors-in-variables model. Ann. Statist. 27 1519–1535.
  • Pagan, A. (1984). Econometric issues in the analysis of regressions with generated regressors. International Econometric Review 25 221–247.
  • Powell, J. L. (1987). Semiparametric estimation of bivariate latent variable models. Discussion paper, Social System Research Institute, Univ. Wisconsin.
  • Rao, J. N. K. and Scott, A. J. (1981). The analysis of categorical data from complex sample surveys: Chi-squares tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc. 76 221–230.
  • Robinson, P. (1988). Root-N-consistent semiparametric regression. Econometrica 56 931–954.
  • Speckman, P. (1988). Kernel smoothing in partial linear models. J. Roy. Statist. Soc. Ser. B 50 413–436.
  • Sepanski, J. H. and Carroll, R. J. (1993). Semiparametric quasi-likelihood and variance function estimation in measurement error models. J. Econometrics 58 223–256.
  • Sepanski, J. H. and Lee, L. F. (1995). Semiparametric estimation of nonlinear errors-in-variables models with validation study. J. Nonparametr. Statist. 4 365–394.
  • Sepanski, J. H., Knickerbocker, R. and Carroll, R. J. (1994). A semiparametric correction for attenuation. J. Amer. Statist. Assoc. 89 1366–1373.
  • Wang, C. Y. and Pepe, M. S. (2000). Expected estimating equations to accommodate covariate measurement error. J. Roy. Statist. Soc. Ser. B 62 509–524.
  • Wu, J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14 1261–1343.
  • Xia, Y. and Li, W. K. (1999). On the estimation and testing of functional-coefficient linear models. Statist. Sinica 9 737–757.
  • Zhang, W., Lee, S. Y. and Song, X. (2002). Local polynomial fitting in semiparametric varying coefficient models. J. Multivariate Anal. 82 166–188.