The Annals of Statistics

Operator norm consistent estimation of large-dimensional sparse covariance matrices

Noureddine El Karoui

Full-text: Open access


Estimating covariance matrices is a problem of fundamental importance in multivariate statistics. In practice it is increasingly frequent to work with data matrices X of dimension n×p, where p and n are both large. Results from random matrix theory show very clearly that in this setting, standard estimators like the sample covariance matrix perform in general very poorly.

In this “large n, large p” setting, it is sometimes the case that practitioners are willing to assume that many elements of the population covariance matrix are equal to 0, and hence this matrix is sparse. We develop an estimator to handle this situation. The estimator is shown to be consistent in operator norm, when, for instance, we have pn as n→∞. In other words the largest singular value of the difference between the estimator and the population covariance matrix goes to zero. This implies consistency of all the eigenvalues and consistency of eigenspaces associated to isolated eigenvalues.

We also propose a notion of sparsity for matrices, that is, “compatible” with spectral analysis and is independent of the ordering of the variables.

Article information

Ann. Statist., Volume 36, Number 6 (2008), 2717-2756.

First available in Project Euclid: 5 January 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 62H12: Estimation

Covariance matrices correlation matrices adjacency matrices eigenvalues of covariance matrices multivariate statistical analysis high-dimensional inference random matrix theory sparsity β-sparsity


El Karoui, Noureddine. Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 (2008), no. 6, 2717--2756. doi:10.1214/07-AOS559.

Export citation


  • [1] Anderson, G. W. and Zeitouni, O. (2006). A CLT for a band matrix model. Probab. Theory Related Fields 134 283–338.
  • [2] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd ed. Wiley, Hoboken, NJ.
  • [3] Bai, Z. D. and Silverstein, J. W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab. 32 553–605.
  • [4] Bengtsson, T. and Furrer, R. (2007). Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98 227–255.
  • [5] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
  • [6] Bhatia, R. (1997). Matrix Analysis. Springer, New York.
  • [7] Bickel, P. J. and Levina, E. (2007). Regularized estimation of large covariance matrices. Ann. Statist. 36 199–227.
  • [8] Bickel, P. J. and Levina, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577–2604.
  • [9] d’Aspremont, A., Banerjee, O. and El Ghaoui, L. (2008). First-order methods for sparse covariance selection. SIAM J. Matrix Anal. Appl. 30 56–66.
  • [10] Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7 1–46.
  • [11] El Karoui, N. (2007). Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35 663–714.
  • [12] El Karoui, N. (2008). Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Statist. 36 2757–2790.
  • [13] Geman, S. (1980). A limit theorem for the norm of random matrices. Ann. Probab. 8 252–261.
  • [14] Haff, L. R. (1980). Empirical Bayes estimation of the multivariate normal covariance matrix. Ann. Statist. 8 586–597.
  • [15] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13–30.
  • [16] Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis. Cambridge Univ. Press.
  • [17] Huang, J. Z., Liu, N., Pourahmadi, M. and Liu, L. (2006). Covariance matrix selection and estimation via penalised normal likelihood. Biometrika 93 85–98.
  • [18] James, W. and Stein, C. (1961). Estimation with quadratic loss. Proc. 4th Berkeley Symp. Math. Statist. Probab. I 361–379. Univ. California Press, Berkeley.
  • [19] Jonsson, D. (1982). Some limit theorems for the eigenvalues of a sample covariance matrix. J. Multivariate Anal. 12 1–38.
  • [20] Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365–411.
  • [21] Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72 507–536.
  • [22] Silverstein, J. W. (1995). Strong convergence of the empirical distribution of eigenvalues of large-dimensional random matrices. J. Multivariate Anal. 55 331–339.
  • [23] Stanley, R. P. (1997). Enumerative Combinatorics. I. Cambridge Univ. Press.
  • [24] Stewart, G. W. and Sun, J. G. (1990). Matrix Perturbation Theory. Academic Press, Boston, MA.
  • [25] Wigner, E. (1955). Characteristic vectors of bordered matrices with infinite dimensions. Ann. of Math. 62 548–564.