Annals of Statistics

Two likelihood-based semiparametric estimation methods for panel count data with covariates

Jon A. Wellner and Ying Zhang

Full-text: Open access


We consider estimation in a particular semiparametric regression model for the mean of a counting process with “panel count” data. The basic model assumption is that the conditional mean function of the counting process is of the form E{ℕ(t)|Z}=exp(β0TZ0(t) where Z is a vector of covariates and Λ0 is the baseline mean function. The “panel count” observation scheme involves observation of the counting process ℕ for an individual at a random number K of random time points; both the number and the locations of these time points may differ across individuals.

We study semiparametric maximum pseudo-likelihood and maximum likelihood estimators of the unknown parameters (β0, Λ0) derived on the basis of a nonhomogeneous Poisson process assumption. The pseudo-likelihood estimator is fairly easy to compute, while the maximum likelihood estimator poses more challenges from the computational perspective. We study asymptotic properties of both estimators assuming that the proportional mean model holds, but dropping the Poisson process assumption used to derive the estimators. In particular we establish asymptotic normality for the estimators of the regression parameter β0 under appropriate hypotheses. The results show that our estimation procedures are robust in the sense that the estimators converge to the truth regardless of the underlying counting process.

Article information

Ann. Statist., Volume 35, Number 5 (2007), 2106-2142.

First available in Project Euclid: 7 November 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F05: Central limit and other weak theorems 60F17: Functional limit theorems; invariance principles
Secondary: 60J65: Brownian motion [See also 58J65] 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx]

Asymptotic distributions asymptotic efficiency asymptotic normality consistency counting process empirical processes information matrix maximum likelihood Poisson process pseudo-likelihood estimators monotone function


Wellner, Jon A.; Zhang, Ying. Two likelihood-based semiparametric estimation methods for panel count data with covariates. Ann. Statist. 35 (2007), no. 5, 2106--2142. doi:10.1214/009053607000000181.

Export citation


  • Andrews, D. F. and Herzberg, A. M. (1985). Data: A Collection of Problems from Many Fields for the Student and Research Worker. Springer, New York.
  • Byar, D. P., Blackard, C. and the Vacurg (1977). Comparisons of placebo, pyridoxine and topical thiotepa in preventing stage I bladder cancer. Urology 10 556–561.
  • Cook, R. J., Lawless, J. F. and Nadeau, C. (1996). Robust tests for treatment comparisons based on recurrent event responses. Biometrics 52 557–571.
  • Cox, D. R. and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. Biometrika 91 729–737.
  • Gaver, D. P. and O'Muircheartaigh, I. G. (1987). Robust empirical Bayes analyses of event rates. Technometrics 29 1–15.
  • Hu, X. J., Sun, J. and Wei, L. J. (2003). Regression parameter estimation from panel counts. Scand. J. Statist. 30 25–43.
  • Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 24 540–568.
  • Jongbloed, G. (1998). The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist. 7 310–321.
  • Kalbfleisch, J. D. and Lawless, J. F. (1985). The analysis of panel data under a Markov assumption. J. Amer. Statist. Assoc. 80 863–871.
  • Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of recurrent events. Technometrics 37 158–168.
  • Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 711–730.
  • Lindsay, B. G. (1988). Composite likelihood methods. In Statistical Inference from Stochastic Processes (N. U. Prahbu, ed.) 221–239. Amer. Math. Soc., Providence, RI.
  • Sun, J. and Kalbfleisch, J. D. (1995). Estimation of the mean function of point processes based on panel count data. Statist. Sinica 5 279–289.
  • Sun, J. and Wei, L. J. (2000). Regression analysis of panel count data with covariate-dependent observation and censoring times. J. R. Stat. Soc. Ser. B Stat. Methodol. 62 293–302.
  • Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics 44 197–209.
  • Thall, P. F. and Lachin, J. M. (1988). Analysis of recurrent events: Nonparametric methods for random-interval count data. J. Amer. Statist. Assoc. 83 339–347.
  • van der Vaart, A. W. (2002). Semiparametric statistics. Lectures on Probability Theory and Statistics. École d'Eté de Probabilités de Saint-Flour XXIX–1999. Lecture Notes in Math. 1781 331–457. Springer, New York.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York.
  • Wei, L. J., Lin, D. Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Amer. Statist. Assoc. 84 1065–1073.
  • Wellner, J. A. and Zhang, Y. (1998). Two estimators of the mean of a counting process with panel count data. Technical Report 341, Dept. Statistics, Univ. Washington. Available at
  • Wellner, J. A. and Zhang, Y. (2000). Two estimators of the mean of a counting process with panel count data. Ann. Statist. 28 779–814.
  • Wellner, J. A. and Zhang, Y. (2005). Two likelihood-based semiparametric estimation methods for panel count data with covariates. Technical Report 488, Dept. Statistics, Univ. Washington. Available at
  • Wellner, J. A., Zhang, Y. and Liu, H. (2004). A semiparametric regression model for panel count data: When do pseudo-likelihood estimators become badly inefficient? Proc. Second Seattle Biostatistical Symposium: Analysis of Correlated Data. Lecture Notes in Statist. 179 143–174. Springer, New York.
  • Wolfram, S. (1996). The Mathematica Book, 3rd ed. Wolfram Media, Champaign, IL.
  • Zhang, Y. (1998). Estimation for counting processes based on incomplete data. Unpublished Ph.D. dissertation, Univ. Washington.
  • Zhang, Y. (2002). A semiparametric pseudolikelihood estimation method for panel count data. Biometrika 89 39–48.
  • Zhang, Y. (2006). Nonparametric $k$-sample tests with panel count data. Biometrika 93 777–790.