The Annals of Statistics
- Ann. Statist.
- Volume 35, Number 1 (2007), 13-40.
On the maximum bias functions of MM-estimates and constrained M-estimates of regression
José R. Berrendero, Beatriz V. M. Mendes, and David E. Tyler
Abstract
We derive the maximum bias functions of the MM-estimates and the constrained M-estimates or CM-estimates of regression and compare them to the maximum bias functions of the S-estimates and the τ-estimates of regression. In these comparisons, the CM-estimates tend to exhibit the most favorable bias-robustness properties. Also, under the Gaussian model, it is shown how one can construct a CM-estimate which has a smaller maximum bias function than a given S-estimate, that is, the resulting CM-estimate dominates the S-estimate in terms of maxbias and, at the same time, is considerably more efficient.
Article information
Source
Ann. Statist., Volume 35, Number 1 (2007), 13-40.
Dates
First available in Project Euclid: 6 June 2007
Permanent link to this document
https://projecteuclid.org/euclid.aos/1181100179
Digital Object Identifier
doi:10.1214/009053606000000975
Mathematical Reviews number (MathSciNet)
MR2332267
Zentralblatt MATH identifier
1114.62030
Subjects
Primary: 62F35: Robustness and adaptive procedures
Secondary: 62J05: Linear regression
Keywords
Robust regression M-estimates S-estimates constrained M-estimates maximum bias curves breakdown point gross error sensitivity
Citation
Berrendero, José R.; Mendes, Beatriz V. M.; Tyler, David E. On the maximum bias functions of MM -estimates and constrained M -estimates of regression. Ann. Statist. 35 (2007), no. 1, 13--40. doi:10.1214/009053606000000975. https://projecteuclid.org/euclid.aos/1181100179