The Annals of Statistics

Discussion: Local Rademacher complexities and oracle inequalities in risk minimization

Peter L. Bartlett and Shahar Mendelson

Full-text: Open access

Article information

Source
Ann. Statist., Volume 34, Number 6 (2006), 2657-2663.

Dates
First available in Project Euclid: 23 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1179935056

Digital Object Identifier
doi:10.1214/009053606000001028

Mathematical Reviews number (MathSciNet)
MR2329459

Citation

Bartlett, Peter L.; Mendelson, Shahar. Discussion: Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Statist. 34 (2006), no. 6, 2657--2663. doi:10.1214/009053606000001028. https://projecteuclid.org/euclid.aos/1179935056


Export citation

References

  • Bartlett, P. L. (2005). Fast rates of uniform convergence and oracle inequalities for model selection. Technical Report, Univ. California, Berkeley.
  • Bartlett, P. L., Jordan, M. I. and McAuliffe, J. D. (2006). Convexity, classification and risk bounds. J. Amer. Statist. Assoc. 101 138–156.
  • Bartlett, P. L. and Mendelson, S. (2006). Empirical minimization. Probab. Theory Related Fields 135 311–334.
  • Bartlett, P. L., Mendelson, S. and Philips, P. (2005). Optimal sample-based estimates of the expectation of the empirical minimizer. Technical Report, Univ. California, Berkeley.
  • Lee, W. S., Bartlett, P. L. and Williamson, R. C. (1996). Efficient agnostic learning of neural networks with bounded fan-in. IEEE Trans. Inform. Theory 42 2118–2132.
  • Mendelson, S. (2002). Improving the sample complexity using global data. IEEE Trans. Inform. Theory 48 1977–1991.
  • Mendelson, S. (2006). On weakly bounded empirical processes. Submitted for publication.
  • Mendelson, S., Pajor, A. and Tomczak-Jaegermann, N. (2007). Reconstruction and subGaussian operators in asymptotic geometric analysis. Geometric and Functional Analysis. To appear.
  • Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 28–76.
  • Tsybakov, A. B. (2004). Optimal aggregation of classifiers in statistical learning. Ann. Statist. 32 135–166.