The Annals of Statistics

Almost Sure Asymptotic Representation for a Class of Functionals of the Kaplan-Meier Estimator

Irene Gijbels and Noel Veraverbeke

Full-text: Open access

Abstract

This paper deals with censored data estimation of a general class of von Mises-type functionals of the survival time distribution $F$. Conditions are given under which an almost sure asymptotic representation holds for the estimator, obtained by applying the same functional to $\hat{F}_n$, the product-limit estimator of Kaplan and Meier.

Article information

Source
Ann. Statist., Volume 19, Number 3 (1991), 1457-1470.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176348256

Digital Object Identifier
doi:10.1214/aos/1176348256

Mathematical Reviews number (MathSciNet)
MR1126332

Zentralblatt MATH identifier
0745.62046

JSTOR
links.jstor.org

Subjects
Primary: 62G05: Estimation
Secondary: 60F15: Strong theorems

Keywords
Censored data almost sure representation $V$-statistics asymptotic normality law of iterated logarithm quantiles

Citation

Gijbels, Irene; Veraverbeke, Noel. Almost Sure Asymptotic Representation for a Class of Functionals of the Kaplan-Meier Estimator. Ann. Statist. 19 (1991), no. 3, 1457--1470. doi:10.1214/aos/1176348256. https://projecteuclid.org/euclid.aos/1176348256


Export citation