The Annals of Statistics

Volumes of Tubular Neighborhoods of Spherical Polyhedra and Statistical Inference

Daniel Q. Naiman

Full-text: Open access

Abstract

For statistical procedures including Scheffe-type simultaneous confidence bounds for response surfaces and likelihood ratio tests for an additional regressor with unspecified parameters in a regression model, the confidence level or size can be expressed in terms of probabilities of the form $P\lbrack U \in D(\Gamma, \theta)\rbrack$, where $\Gamma$ is a subset of $S^m$ (the unit sphere in $R^{m + 1}), U$ is uniformly distributed in $S^m$ and $D(\Gamma, \theta)$ denotes the tubular neighborhood of $\Gamma$ of angular radius $\theta$, the set of points in $S^m$ whose angular distance from $\Gamma$ is at most $\theta$. Consequently, determining critical points involves the calculation of the volumes of tubes. For the case when $\Gamma$ is the diffeomorphic image of an $r$-dimensional convex polytope, an upper bound is given for the volume of its tubular neighborhood when the tube radius is sufficiently small, and which is exact in some special cases. Even if the tubular radius is moderate in size, the expression can be used to approximate the volume. The volume expression is a sum of $r$-fold integrals, one corresponding to each face of the polytope, and is derived using a result of Weyl (1939), which gives the volume of a tubular neighborhood of a $k$-dimensional submanifold of the unit sphere. Use of the expression leads to conservative statistical procedures when the desired error probability is sufficiently small and to asymptotically valid procedures as the error probability goes to zero.

Article information

Source
Ann. Statist., Volume 18, Number 2 (1990), 685-716.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176347621

Digital Object Identifier
doi:10.1214/aos/1176347621

Mathematical Reviews number (MathSciNet)
MR1056332

Zentralblatt MATH identifier
0723.62019

JSTOR
links.jstor.org

Subjects
Primary: 60E15: Inequalities; stochastic orderings
Secondary: 62J01 62J05: Linear regression 62F25: Tolerance and confidence regions 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]

Keywords
Simultaneous confidence bounds response surfaces likelihood ratio tests differential geometry convex geometry

Citation

Naiman, Daniel Q. Volumes of Tubular Neighborhoods of Spherical Polyhedra and Statistical Inference. Ann. Statist. 18 (1990), no. 2, 685--716. doi:10.1214/aos/1176347621. https://projecteuclid.org/euclid.aos/1176347621


Export citation