The Annals of Statistics
- Ann. Statist.
- Volume 11, Number 4 (1983), 1060-1068.
General Differential and Lagrangian Theory for Optimal Experimental Design
F. Pukelsheim and D. M. Titterington
Abstract
The problem of optimal experimental design for estimating parameters in linear regression models is placed in a general convex analysis setting. Duality results are obtained using two approaches, one based on subgradients and the other on Lagrangian theory. The subgradient concept is also used to derive a potentially useful equivalence theorm for establishing the optimality of a singular design and, finally, general versions of the original equivalence theorems of Kiefer and Wolfowitz (1960) are obtained.
Article information
Source
Ann. Statist., Volume 11, Number 4 (1983), 1060-1068.
Dates
First available in Project Euclid: 12 April 2007
Permanent link to this document
https://projecteuclid.org/euclid.aos/1176346321
Digital Object Identifier
doi:10.1214/aos/1176346321
Mathematical Reviews number (MathSciNet)
MR865345
Zentralblatt MATH identifier
0592.62066
JSTOR
links.jstor.org
Subjects
Primary: 62K05: Optimal designs
Secondary: 90C25: Convex programming
Keywords
Optimal design convex analysis subgradient Lagrange multipliers duality
Citation
Pukelsheim, F.; Titterington, D. M. General Differential and Lagrangian Theory for Optimal Experimental Design. Ann. Statist. 11 (1983), no. 4, 1060--1068. doi:10.1214/aos/1176346321. https://projecteuclid.org/euclid.aos/1176346321