The Annals of Statistics

Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics

P. V. Rao, Eugene F. Schuster, and Ramon C. Littell

Full-text: Open access

Abstract

A point estimator and a set of confidence intervals based on the Kolmogorov-Smirnov statistic are proposed for the shift parameter in the two-sample problem. Asymptotic distibution of the etimator as well as asymptotic bounds for the lengths of the intervals are derived. The two-sample results are then adapted to the one-sample problem to define an estimator and a set of confidence intervals for the center of a symmetric population.

Article information

Source
Ann. Statist., Volume 3, Number 4 (1975), 862-873.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176343187

Digital Object Identifier
doi:10.1214/aos/1176343187

Mathematical Reviews number (MathSciNet)
MR375609

Zentralblatt MATH identifier
0313.62026

JSTOR
links.jstor.org

Keywords
Shift parameter center of symmetry Kolmogorov-Smirnov statistics empirical distribution function estimation confidence interval asymptotic distribution

Citation

Rao, P. V.; Schuster, Eugene F.; Littell, Ramon C. Estimation of Shift and Center of Symmetry Based on Kolmogorov-Smirnov Statistics. Ann. Statist. 3 (1975), no. 4, 862--873. doi:10.1214/aos/1176343187. https://projecteuclid.org/euclid.aos/1176343187


Export citation