The Annals of Statistics

Fisher Information and the Pitman Estimator of a Location Parameter

Sidney C. Port and Charles J. Stone

Full-text: Open access

Abstract

In this paper we consider estimation of the location parameter $\theta \in R^d$ based on a random sample from $(\theta + X, Y),$ where $X$ is a $d$-dimensional random vector, $Y$ is a random element of some measure space $\mathscr{Y},$ and $(X, Y)$ has a known distribution. We first define the Fisher information $\mathscr{J}(\theta + X, Y)$ and the inverse information $\mathscr{J}^-(\theta + X, Y)$ under no regularity conditions. The properties of these quantities are investigated. Supposing that $E|X|^\delta < \infty$ for some $\delta > 0$ we show that for $n$ sufficiently large the Pitman estimator $\hat{\theta}_n$ of $\theta$ based on a random sample of size $n$ is well defined, unbiased, and its covariance, which is independent of $\theta$, satisfies the inequality $n \operatorname{Cov} \hat{\theta}_n \geqq \mathscr{J}^-(\theta + X, Y)$. Moreover, $\lim_{n\rightarrow \infty} n \operatorname{Cov} \hat{\theta}_n = \mathscr{J}^-(\theta + X, Y)$ and $n^\frac{1}{2}(\hat{\theta}_n - \theta)$ is asymptotically normal with mean zero and covariance $\mathscr{J}^-(\theta + X, Y)$.

Article information

Source
Ann. Statist., Volume 2, Number 2 (1974), 225-247.

Dates
First available in Project Euclid: 12 April 2007

Permanent link to this document
https://projecteuclid.org/euclid.aos/1176342660

Digital Object Identifier
doi:10.1214/aos/1176342660

Mathematical Reviews number (MathSciNet)
MR362665

Zentralblatt MATH identifier
0297.62016

JSTOR
links.jstor.org

Subjects
Primary: 62F10: Point estimation
Secondary: 62F20

Keywords
Location parameter Fisher information Cramer-Rao inequality Pitman estimator asymptotic normality

Citation

Port, Sidney C.; Stone, Charles J. Fisher Information and the Pitman Estimator of a Location Parameter. Ann. Statist. 2 (1974), no. 2, 225--247. doi:10.1214/aos/1176342660. https://projecteuclid.org/euclid.aos/1176342660


Export citation