## The Annals of Statistics

- Ann. Statist.
- Volume 1, Number 2 (1973), 291-296.

### The Large-Sample Power of Permutation Tests for Randomization Models

#### Abstract

The permutation test using the usual $F$-statistic from a randomized block experiment is considered under a randomization model. Alternative hypotheses assuming additive treatment effects are considered. It is shown that the critical value of the test statistic tends to a constant in probability as the number of blocks becomes large. The large-sample power of the test is calculated for a sequence of alternatives arising naturally from the randomization model.

#### Article information

**Source**

Ann. Statist., Volume 1, Number 2 (1973), 291-296.

**Dates**

First available in Project Euclid: 12 April 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.aos/1176342366

**Digital Object Identifier**

doi:10.1214/aos/1176342366

**Mathematical Reviews number (MathSciNet)**

MR359168

**Zentralblatt MATH identifier**

0255.62041

**JSTOR**

links.jstor.org

**Subjects**

Primary: 62G10: Hypothesis testing

Secondary: 62E20: Asymptotic distribution theory

**Keywords**

Large-sample power permutation tests randomization models randomized block design

#### Citation

Robinson, J. The Large-Sample Power of Permutation Tests for Randomization Models. Ann. Statist. 1 (1973), no. 2, 291--296. doi:10.1214/aos/1176342366. https://projecteuclid.org/euclid.aos/1176342366