The Annals of Statistics

Fitting an error distribution in some heteroscedastic time series models

Hira L. Koul and Shiqing Ling

Full-text: Open access

Abstract

This paper addresses the problem of fitting a known distribution to the innovation distribution in a class of stationary and ergodic time series models. The asymptotic null distribution of the usual Kolmogorov–Smirnov test based on the residuals generally depends on the underlying model parameters and the error distribution. To overcome the dependence on the underlying model parameters, we propose that tests be based on a vector of certain weighted residual empirical processes. Under the null hypothesis and under minimal moment conditions, this vector of processes is shown to converge weakly to a vector of independent copies of a Gaussian process whose covariance function depends only on the fitted distribution and not on the model. Under certain local alternatives, the proposed test is shown to have nontrivial asymptotic power. The Monte Carlo critical values of this test are tabulated when fitting standard normal and double exponential distributions. The results obtained are shown to be applicable to GARCH and ARMA–GARCH models, the often used models in econometrics and finance. A simulation study shows that the test has satisfactory size and power for finite samples at these models. The paper also contains an asymptotic uniform expansion result for a general weighted residual empirical process useful in heteroscedastic models under minimal moment conditions, a result of independent interest.

Article information

Source
Ann. Statist., Volume 34, Number 2 (2006), 994-1012.

Dates
First available in Project Euclid: 27 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.aos/1151418249

Digital Object Identifier
doi:10.1214/009053606000000191

Mathematical Reviews number (MathSciNet)
MR2283401

Zentralblatt MATH identifier
1095.62110

Subjects
Primary: 62F05: Asymptotic properties of tests 62M10: Time series, auto-correlation, regression, etc. [See also 91B84]
Secondary: 60G10: Stationary processes

Keywords
Nonlinear time series models goodness-of-fit test weighted empirical process

Citation

L. Koul, Hira; Ling, Shiqing. Fitting an error distribution in some heteroscedastic time series models. Ann. Statist. 34 (2006), no. 2, 994--1012. doi:10.1214/009053606000000191. https://projecteuclid.org/euclid.aos/1151418249


Export citation

References

  • Berkes, I. and Horváth, L. (2003). Limit results for the empirical process of squared residuals in GARCH models. Stochastic Process. Appl. 105 271--298.
  • Boldin, M. V. (1982). Estimation of the distribution of noise in an autoregressive scheme. Theory Probab. Appl. 27 866--871.
  • Boldin, M. V. (1989). On hypothesis testing in a moving average scheme by the Kolmogorov--Smirnov and the $\omega^2$ tests. Theory Probab. Appl. 34 699--704.
  • Boldin, M. V. (1998). On residual empirical distribution functions in ARCH models with applications to testing and estimation. Mitt. Math. Sem. Giessen No. 235 49--66.
  • Boldin, M. V. (2002). On sequential residual empirical processes in heteroscedastic time series. Math. Methods Statist. 11 453--464.
  • Bougerol, P. and Picard, N. M. (1992). Stationarity of GARCH processes and of some nonnegative time series. J. Econometrics 52 115--127.
  • D'Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-Fit Techniques. Dekker, New York.
  • Drost, F. C., Klaassen, C. A. J. and Werker, B. J. M. (1997). Adaptive estimation in time-series models. Ann. Statist. 25 786--817.
  • Durbin, J. (1973). Distribution Theory for Tests Based on the Sample Distribution Function. SIAM, Philadelphia.
  • Francq, C. and Zakoïan, J.-M. (2004). Maximum likelihood estimation of pure GARCH and ARMA--GARCH processes. Bernoulli 10 605--637.
  • Horváth, L., Kokoszka, P. and Teyssière, G. (2001). Empirical process of the squared residuals of an ARCH sequence. Ann. Statist. 29 445--469.
  • Horváth, L., Kokoszka, P. and Teyssière, G. (2004). Bootstrap misspecification tests for ARCH based on the empirical process of squared residuals. J. Stat. Comput. Simul. 74 469--485.
  • Koul, H. L. (1991). A weak convergence result useful in robust autoregression. J. Statist. Plann. Inference 29 291--308.
  • Koul, H. L. (1992). Weighted Empiricals and Linear Models. IMS, Hayward, CA.
  • Koul, H. L. (1996). Asymptotics of some estimators and sequential residual empiricals in nonlinear time series. Ann. Statist. 24 380--404.
  • Koul, H. L. (2002). Weighted Empirical Processes in Dynamic Nonlinear Models, 2nd ed. Lecture Notes in Statist. 166. Springer, New York.
  • Koul, H. L. and Ossiander, M. (1994). Weak convergence of randomly weighted dependent residual empiricals with applications to autoregression. Ann. Statist. 22 540--562.
  • Kulperger, R. and Yu, H. (2005). High moment partial sum processes of residuals in GARCH models and their applications. Ann. Statist. 33 2395--2422.
  • Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer, New York.
  • Li, W. K. and Mak, T. K. (1994). On the squared residual autocorrelations in non-linear time series with conditional heteroskedasticity. J. Time Ser. Anal. 15 627--636.
  • Ling, S. (1998). Weak convergence of the sequential empirical processes of residuals in nonstationary autoregressive models. Ann. Statist. 26 741--754.
  • Ling, S. (1999). On the probabilistic properties of a double threshold ARMA conditional heteroskedastic model. J. Appl. Probab. 36 688--705.
  • Ling, S. (2003). Adaptive estimators and tests of stationary and non-stationary short- and long- memory ARFIMA--GARCH models. J. Amer. Statist. Assoc. 98 955--967.
  • Ling, S. (2005). Self-weighted and local quasi-maximum likelihood estimators for ARMA--GARCH /IGARCH models. J. Eonometrics. To appear.
  • Ling, S. and Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroskedasticity. J. Amer. Statist. Assoc. 92 1184--1194.
  • Ling, S. and McAleer, M. (2003). On adaptive estimation in nonstationary ARMA models with GARCH errors. Ann. Statist. 31 642--674.
  • Ling, S. and McAleer, M. (2004). Regression quantiles for unstable autoregression models. J. Multivariate Anal. 89 304--328.
  • Loynes, R. M. (1980). The empirical distribution function of residuals from generalized regression. Ann. Statist. 8 285--298.
  • Tsay, R. S. (2005). Analysis of Financial Time Series, 2nd ed. Wiley, New York.
  • van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York.